• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 691, Processing Time 0.029 seconds

Finite element analysis of a injection blow molding process for the thick-walled PET bottle (후육 벽 PET 용기에 대한 사출 블로우 성형의 유한요소해석)

  • Hong, Seok-Kwan;Song, Min-Jae;Ko, Young-Bae;Cha, Baeg-Soon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Plastic containers which provides the opportunity to reduce transportation costs are lighter and less brittle than glass containers. As a results, efforts to replace glass with plastic are ongoing. The blow molding method is a typical approach in producing plastic containers. Single-stage injection blow molding (ISBM) is one of the blow molding methods. However, the difficulty in controlling the temperature during the injection molding process is considered its main disadvantage. In this study, ISBM process analysis of relatively thick walled containers such as cosmetic containers is carried out. The initial temperature distribution of the preform is deemed to be the most influential factor in the accuracy of blow molding for the thick vessel. In order to accurately predict this, all heat transfer processes of the preform are considered. The validity of this analytical procedure is verified by comparing the cross-sectional thickness with the actual product. Finally, the validated analytical method is used to evaluate the factors affecting the thickness of the final molded part. The ISBM analysis technique for thick walled vessels developed through this study can be used as an effective predictor for preform design and blow process.

An Investigation of Tunnel Behaviour Using a Time-based 2-D Modelling Method (시간-파라미터 법에 의한 터널거동 특성 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2002
  • Tunnel construction is a complex three dimensional operation. Since, however, it is neither possible nor useful to simulate all conditions and parameters in detail, a simplified two dimensional model is commonly employed in practice. The simulation of three dimensional conditions by a two dimensional model should use empirical parameters. The numerical predictions indicate that analysis results are highly dependent on the parameters. An improved modelling method based on time was adopted to account for three dimensional effect at the tunnel heading and time dependent nature, and used to perform an analysis of tunnelling in decomposed granite. The effects of weathering degree, tunnel shape and multi-drift excavation were investigated by using the method. It is identified that a structural benefit can be obtained by adopting a horse-shoe-shaped cross section with multi-drift excavation in mixed-force ground condition.

A Study on Stability Evaluation of the Nail-Anchor Mixed Support System

  • Kim, Hong-Taek;Cho, Yong-Kwon;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.41-70
    • /
    • 1999
  • The benefits of utilizing internal reinforced members, such as soil nails and ground anchors, in maintaining stable excavations and slopes have been known among geotechnical engineers to be very effective. Occasionally, however, both soil nails and ground anchors are simultaneously used in one excavation site. In the present study, a method of limit equilibrium stability analysis of the excavation zone reinforced with the vertically or horizontally mixed nail-anchor system is proposed to evaluate the global safety factor with respect to a sliding failure. The postulated failure wedges are determined based on the results of the $FLAC^{2D}\; 및\; FLAC^{3D}$ program analyses. This study also deals with a determination of the required thickness of the shotcrete facing. An excessive facing thickness may be required due to both the stress concentration and the relative displacement at the interface zone between the soil nailing system and the ground anchor system. A simple finite element method of analysis is presented to estimate the corresponding relative displacement at the interface zone between two different support systems. As an efficient resolution to reduce the facing thickness, the modified bearing plate system is also proposed. Finally with various analysis related to the effects of design parameters, the predicted displacements are compared with the results of the $FLAC^{2D}$ program analyses.

  • PDF

Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand (세립 사질토 지반에 설치된 석션 앵커의 수평 지지력)

  • Kim, Surin;Choo, Yun Wook;Kim, Dong-Soo;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

Analysis of the Homogenization of the Elastic Behavior for a Sheet with Sheared Protrusions using Hexahedral Mesh Coarsening (육면체 요소 재구성을 통한 개방형 사다리꼴이 성형된 판재의 탄성 거동 균질화에 대한 연구)

  • Lee, C.W.;Yang, D.Y.;Park, J.S.;Kang, D.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • The current collector for the molten carbonate fuel cell (MCFC) which has sheared protrusions is manufactured by the three-stage forming process that integrates slitting, preforming and final forming. Due to the repetition of sheared protrusions, an effective simulation method is required to predict the mechanical behavior. In the current study, a sheet with sheared protrusions was assumed to be an orthotropic plate, which has the same length, width and height. FEM simulations were conducted to evaluate the homogenized properties of the current collector, which has 4 (longitudinal direction) x 4 (transverse direction) sheared protrusions. The simulation model was constructed using hexahedral mesh coarsening. From the verification examples, it was found that the proposed simulation method was efficient within reasonable accuracy. The calculated homogenized properties can be applied to the design of a stack for molten carbonate fuel cells and the prediction of mechanical behavior for other applications.

Analysis and Design of Micro Solenoid (마이크로 솔레노이드의 해석 및 설계)

  • Jeon, Y.S.;Bae, S.K.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.14-20
    • /
    • 2006
  • Recently, the on-off solenoid valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for on-off solenoid valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate on-off solenoid valve using the analogy of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, flow field characteristics was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D simulation using distribution curve of the force by working the front poppet.

  • PDF

Comparison of Magnetic Resonant Coupling Wireless Power Transfer Systems within Aligned and Unaligned Positions and Determining their Limits

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.652-659
    • /
    • 2016
  • In this study, the efficiencies for both the angular aligned and unaligned positions of the receiver and transmitter coils of wireless power transfer (WPT) systems are examined. Some parameters of the equivalent circuit were calculated with Maxwell 3D software. The analytical solution of the circuit was calculated in MATLAB program through the composition of the system's mathematical modeling. The numerical solution of the system, however, was calculated using PSIM, which is circuit simulation software. In addition, with the use of the finite element method (FEM) in Maxwell 3D software, transient analysis of the three-dimensional system was performed. The efficiency of the system was estimated through the calculation of input and output power. The results demonstrated that power was efficiently transmitted to a certain extent in aligned and unaligned positions. The results also revealed that, for aligned positions, high efficiency with air gaps of 15-20 cm can be obtained and that the efficiency quickly dropped with air gaps of more than 20 cm. For spatially unaligned positions, it was observed that wireless power transfer could be realized with high efficiency with air gaps of up to 10 cm and that efficiency quickly dropped with air gaps of more than 10 cm.

Optimum design of a pilger mill process for wire forming using CAD/CAE (CAD/CAE를 이용한 세선 성형용 필거밀 공정의 최적설계)

  • 정용수;박훈재;김승수;나경환;이형욱;한창수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.84-88
    • /
    • 2003
  • In this paper, The optimum design of a die shape has been carried out the FEM analysis of a pilger mill process considering various factors. The pilger mill forming process consists of a pair of rotating die which has appropriate surface shape. The important design parameters of the pilger mill are the feed rate and the profile of grooved die. Optimum design procedure was performed in order to investigated effects on the forming load and the deformed shape of material depending on the die radius profile. Profile of the die surface for the optimum design were suggested with the linear, the cosine and the quadratic curve considering a physical forming process. The surface of each die was modeled using the 3DAutoCAD and the analysis of pilger forming process was performed using the LS-DYNA3D. The optimum profile of the die shape for the pilger mill was determined to the quadratic profile. Since the analysis results provide that the model of the quadratic profile gives the lowest forming load and a proper deformed shape.

  • PDF

Finite Element Eigen Analysis of Undamped Beam Structure with Composite Sections (복합단면을 갖는 비 감쇠 보 구조물의 유한요소 고유치 해석)

  • Park, Keun-Man;Cho, Jin-Rae;Jung, Weui-Bong;Bae, Soo-Ryong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.691-697
    • /
    • 2007
  • Numerical eigen analysis of beam-like structure can be easily and effectively done by various conventional beam theory-based methods. However, in case of the structures composed of composite-sectioned beams, the application of conventional numerical methods requires one to derive both equivalent material and geometry properties. In the present paper, these equivalent properties are derived by the transformed section method and the test FEM program is coded. The numerical accuracy of the proposed method is verified through the comparison with the ANSYS 3-D model.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.