• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 696, Processing Time 0.026 seconds

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.

Design of Simulator for the Excavator (굴삭기 시뮬레이터의 설계)

  • Kim, D.S.;Bae, S.K.;Kim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2006
  • Recently, the cylinder of the excavator is applied in the various environment. So, we need the development of the simulator for the excavator. The simulator has the effects of the decrease of the cost and improvement of the cylinder's performance. In this paper, we design the simulator for the excavator and makes an analysis of the dynamics and structure. The simulator was applied to the excavator's models of 10ton, 20ton and 30ton because we built the data base of a real excavator's cylinder of information in the experiment. And we used the FEM analysis for the comparative study on the characteristics.

  • PDF

The Analysis of Axisymmetric Field Problem by C-1 FEM (C-1 유한요소법에 의한 축대칭장 문제의 해석)

  • Jang, I.K.;Kwak, D.S.;Shin, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.21-23
    • /
    • 1999
  • In this paper, the analysis of the electric field in the chamber of high voltage $SF_6$ GCB(Gas Circuit Breaker) is presented by using C-1 FEM. For this purpose, pre-processing program and post-processing program were developed for axisymmetirc 3 dimensional analysis and the electric field in cylindric chamber was analyzed. Important problem is that electric analysis must be considered coronal due to break-down of $SF_6$ when it is cutted off. To solve this problem, a procedure is needed to verify that the solution of Poisson's equation for scalar potential satisfy charge continuos condition because of using first order element os not satisfy the electric continuous condition, C-1 FEM is introduce to obtain electirc potential and electric field at the same time. Analysis of the distribution of electric field on model was done. It is confirmed that the developed program in this paper applicable to design and to analyze of characteristics in total program as electric characteristics analysis routine.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

A Study on Stress Concentration Factor of Composite Laminate Mechanical Joints (복합재료 적층판 기계적 체결부 응력집중계수에 대한 고찰)

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.194-200
    • /
    • 2013
  • In this paper, the results of composite laminate mechanical joints test(ASTM D5961) are compared with the theoretical strength calculations and FEM analysis results. To calculate the S.C.F.(stress concentration factor) on joint strength, equations on metallic and composite materials in ASM Handbook used and compared with experimental results. The difference of joint strength are compared by geometrical parameters and joining types(single/double lap joint). In FEM analysis, to find efficient FEM model on composite laminate mechanical joint, several FEM models are compared with experimental test results.

Dynamic Analysis of Slotless Permanent Magnet Linear Synchronous Motor using the 3-D Space Harmonic Method

  • Ahn, Ho-Jin;Kang, Gyu-Hong;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.162-167
    • /
    • 2002
  • This paper presents the dynamic analysis method for a slotless permanent magnet linear synchronous motor (PMLSM) using the 3-D space harmonic method. Instantaneous emf and thrust are considered by movement of the PM and instantaneous armature current instead of $K_E$ (back-emf constant) and $K_F$(thrust force constant) for accurate results. The results of magnetic field distribution, back-emf, inductance, and thrust are in agreement with 2-D FEM and experimental results. To confirm the validity of this method, the calculated results are compared to measured ones.

A 3-D Finite Element Analysis on the Characteristics of High Power Trigatron (3차원 유한요소법을 이용한 대전력 트리가트론의 특성 해석)

  • Lee, Won-Young;Park, Jeong-Ho;Ju, Heung-Jin;Choi, Seung-Gil;Ko, Kwang-Cheol;Kang, Hyeong-Bu
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.205-207
    • /
    • 2001
  • This study is characteristic analysis to optimize triggering of a high-power trigatron by FEM which is used to analyse electric field distribution in the trigatron. Triggering characteristics of a trigatron depends on arrangement of voltage polarity applied on electrodes and configuration of electrodes. This study is the preliminary stage for an experiment and make it possible to experiment effectively by finding optimal triggering characteristics though 3-dimensional node-based FEM which can practically model the complex structured electrode system.

  • PDF

Analysis of arc driving force for 3 petal and 4petal of spiral type vacuum interrupter by FEM analysis (FEM 해석을 통한 Spiral type 진공인터럽터의 전극형상에 따른 아크구동력 비교)

  • Kim, Byoung-Chul;Yoon, Jae-Hun;Hoe, Jun;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.245-246
    • /
    • 2008
  • In this paper we calculated and compared the arc driving force of two spiral-tyre vacuum interrupter electrode models which have 3petals and 4petals respectively by means of commercial finite element method software Maxwell 3D. As a result we can find that the more petals the electrode has, the stronger arc driving force was generated. This simulation method can contribute to optimization of spiral-type electrode designs in a view of arc driving force.

  • PDF

Electrical discharge machining of $TiC/Al_2O_3$ Ceramic Composite (탄화티탄/알루미나 세라믹 복합체의 방전가공)

  • Wang, D.H.;Woo, J.Y.;Ahn, Y.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.80-89
    • /
    • 1997
  • Die sinking electrical discharge machining(EDM) was conducted for ceramic composite of 33 weight percent TiC based on AI$_{2}$O$_{3}$ ceramic matrix according to the change of current and duty factor(DF). Material removal rate(MRR) was increased as the current and the duty factor increased, but better surface mor-pholoty was obtained in the region of lower current and duty factor. From the scanning electron microscopy(SEM) photographs and the energy dispersive X-ray spectroscopy(EDX) of the EDMed surface, EDM trace formed by one discharge spark was analyzed. Although the bending strength after EDM was highly decreased, reliability obtained by weibull analysis was increased twice. The bending strength was recovered or more by barrel polishing after EDM. From the FEM analysis of temperature for one spark, the possible melting region of AI$_{2}$O$_{3}$and TiC was obtained.

  • PDF

3-D Vibration Analysis of Floating Structures Like Ships Using FEM-BEM

  • Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.107-112
    • /
    • 1990
  • In the vibration analysis of structure in fluid such as ships and offshore structures, the hydrodynamic added mass considerably affects the result of analysis. Therefore correct evaluation of the hydrodynamic added mass effect is required for an accurate analysis. But the correct evaluation of the effect is not simple because the added mass varies with the mode shape of vibration as well as the configuration of the structure. The universal method employed to evaluate added mass in ship hull vibration is Lewis's method via the introduction of 3 dimensional correction factor. But this conventional method is valid only for beam-like vibration.

  • PDF