• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 690, Processing Time 0.027 seconds

Characteristic Analysis of a Magnet for Magnetically Levitated Vehicle using FLUX3D (FLUX3D를 이용한 자기부상용 전자석의 특성 해석)

  • Lee, Jae-Kun;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.127-129
    • /
    • 1996
  • A 3-dimensional analysis is desired for a magnet of magnetically levitated vehicle because the geometrical shape of the magnet is complicated and nonsymmetric. A FEM package of FLUX3D is used to analyze the characteristic of the magnet. Various quantities could be observed like levitation force, flux density distribution along the air gap, edge and fringing effect, leakage flux pattern, etc. The simulation results from FLUX3D are compared with those of 2-D analysis and test results. There are a little difference between results due to the boundary conditions and magnetized B-H curve of the core.

  • PDF

ANALYSIS OF PERMANENT MAGNET OVERHANG EFFECT BY USING 3D FEM IN THE POINT OF NOISE AND VIBRATION (3차원 유한요소법을 이용한 BLDC 모터의 영구 자석 오버행에 의한 소음 및 진동 특성)

  • An, Young-Gyu;Kang, Gyu-Hong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.831-832
    • /
    • 2006
  • 본 논문에서는 Brushless DC Motors(이하 BLDC Motor이라 함)의 영구 자석의 오버행에 따른 진동, 소음 특성에 대하여 다루었다. 비대칭 오버행 구조에서는 Z축 방향 힘이 발생한다. 이는 베어링에 손상을 입힐 뿐 아니라 큰 노이즈와 진동을 유발시킨다. 따라서 진동과 소음의 감소를 위한 자석 오버행 효과 해석이 필수적이다. 본 논문에서는 비대칭 영구 자석 오버행 효과를 해석하고 BLDC Motor에서 발생하는 소음과 진동을 분석하였고 비대칭 영구 자석 오버행 효과를 고려하여 Z축 방향의 영향력을 계산하기 위하여 3차원 유한요소법(3D FEM)을 사용하였다.

  • PDF

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

The Linearity Analysis of Low Noise Down-Converter for Ka-band UHD Satellite-broadcasting (Ka-대역 UHD 위성방송용 저 잡음 하향변환기의 선형성 분석)

  • Mok, Gwang-Yun;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • In this paper, we suggested that a RF-front module of down-converter that represents the lowest noise figure to receive high quality video signals because the attenuation occurs in the atmosphere over 20GHz. By budget analysis of CDR, SFDR and CIP3 of RF-FEM, we also analyzed the parameters and linearity that presents high dynamic range. The total gain of designed Ka-band down-converter is 61.8dBand noise figure is 1.05dB, so gain and noise figures show excellent properties. In the future, the designed RF-FEM will be applied to the Ka-band satellite down-converter for UHD-class video transmission.

Parametric Modeling Technique in OPERA-3d Preprocessor (OPERA-3d 전처리기에서의 변수화 모델링 기법)

  • Lim, In-Taek;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.214-216
    • /
    • 1998
  • Parameterizing a model is one of the most efficient ways of conducting "virtual prototying" i.e. exploring the "What if?" scenario. But it is very difficult to construct parameterized models in commercial based FEM programs, because they usually adopt the mouse inputs in their GUI, which cannot be parameterized. We consolidated a parametric modelling technique in OPERA-3d preprocessor, which is one of world leading electromagnetic analysis programs, by combining the mouse inputs in GUI with it's FORTRAN-based self script command language.

  • PDF

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Stress Intensity Factor Analysis System for 3D Cracks Using Fuzzy Mesh (퍼지메쉬를 이용한 3차원 균열에 대한 응력확대계수 해석 시스템)

  • Lee, Joon-Seong;Lee, Eun-Chul;Choi, Yoon-Jong;Lee, Yang-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic stress intensity factor analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. Finally, the complete finite element(FE) model generated, and a stress analysis is performed. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

Static Behavior of Reinforced Railway Roadbed by Geotextile Bag (지오텍스타일 백으로 보강된 철도노반의 정적거동 분석)

  • Lee, Dong-Hyun;Shin, Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.180-186
    • /
    • 2006
  • In this study, a large-scale laboratory model test, 2-D and 3-D numerical analyses were conducted to verify the reinforcement effect by utilizing geotextile bag on the railway roadbed. Static loading which simulated train load was applied on the geotextile bag-reinforced railway roadbed and also unreinforced railway roadbed, Computer program named Pentagon which is a part of FEM programs was used in the numerical analysis. Based on the results of laboratory test, 2-D and 3-D numerical analyses, the effect of load distribution and settlement reduction was found to be depending on the geotextile characteristics, tensile strength of geotextite, and interface friction angle between geotextile bags. In general, the result of 2-D and 3-D numerical analyses shows lower value than that of laboratory test. Also, the result of 3-D numerical analyses shows lower value than that of 2-D numerical analyses because of its stress transfer effect.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.