• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 691, Processing Time 0.029 seconds

Analytical Evaluation of Rotor Dynamic Characteristic of Roots Type Vacuum Pump (루츠타입 진공펌프 동특성의 해석적 평가)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Ha, Jeong-Min;Gu, Dong-Sik;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1112-1119
    • /
    • 2011
  • The goal of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Roots type vacuum pump, which is a dry vacuum pump, is necessary for the manufacturing process of the semiconductor and the display. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

Comparison of Absorbing Boundary Conditions and Waveguide Port Boundary Condition for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 시뮬레이션에 있어 흡수경계조건 및 도파관 포트 경계조건 고찰 및 비교)

  • Mincheol Jo;Woobin Park;Woochan Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • Waveguides are transmission lines that guide electromagnetic waves in the desired direction and are utilized in various fields such as medical devices, radar systems, and satellite communications. Computational electromagnetics (CEM) is essential for designing and optimizing waveguides. The finite element method (FEM), which is one of the numerical analysis techniques, is efficient in solving closed problems such as waveguides. In order to apply FEM for waveguide analysis, boundary conditions that truncate the computational domain are required. This paper performs electromagnetic simulations using absorbing boundary conditions (ABC) and waveguide port boundary conditions (WPBC) in 2/D and 3/D waveguides using the finite element method and compared their performances. The accuracy of the analysis was verified by comparing the results with HFSS, a representative commercial electromagnetic simulation software. Simulation results confirm that applying WPBC allows for smaller analysis domains than ABC.

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Microcomputer FEM Analysis of Soil Cutting Process

  • Shen, J.;Kushwaha, R.L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1063-1072
    • /
    • 1993
  • Current finite element analysis programs for soil cutting process with tillage tools require mainframe computers. Several special treatments in developing a microcomputer FEM program were introduced to increase the capacity for solving large problems and reducing the total time cost. The program was evaluated by solving one 3-D example on a 489 microcomputer. The results showed a close agreement with the laboratory soil bin test.

  • PDF

A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process (후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구)

  • 정상원;조규종;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

Residual Stress Analysis of the Overlay Weld on the Dissimilar Metal Butt Weld (이종재이종재료 Butt 용접에 대한 Overlay 용접의 잔류응력해석)

  • Kim, Kang-Soo;Lee, Ho-Jin;Lee, Bong-Sang;Jung, In-Chul;Byeon, Jin-Gwi;Park, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.534-537
    • /
    • 2008
  • In recent years, the dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced cracking due to primary water stress corrosion(PWSCC). It is well known that one reason of the cracking is the residual stress by the weld. But, it is difficult to estimate exactly weld residual stress due to many parameters of welding. In this paper, the analysis of 3 FEM models made by ABAQUS Code is performed to estimate exactly the weld residual stress on the dissimilar metal weld. 3 FEM models are Butt model, Repair model and Overlay model and are the plane.strain 2D model. The thermal analysis and the stress analysis are performed on each model and the residual stresses on each model were calculated and compared respectively. Also, the specimen of Butt model was made and the residual stresses were measured by X-Ray method and Hole Drilling Technique. These results were compared with the FEM result of Butt model.

  • PDF

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF