• Title/Summary/Keyword: 3-D Curved Surface

Search Result 96, Processing Time 0.022 seconds

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF

Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition (촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성)

  • Kim, Hyeon-Jin;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.458-463
    • /
    • 2002
  • Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

Basic Study on the Image Instrument of the Facial-form by the 3D-facial Scanner (얼굴스캐너를 활용한 안면형상 영상진단기의 기초 연구)

  • Kim, Gyeong-Cheol;Lee, Jeong-Won;Kim, Hoon;Shin, Soon-Shik;Lee, Hai-Woong;Lee, Yong-Tae;Chi, Gyoo-Yong;Kim, Jong-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.497-501
    • /
    • 2008
  • 3D facial scanner for an accurate analysis is measured precisely a distance in straight, a distance in curved line, an angle in 3D data, the area of surface. We can easy acquire 3D data by the method of 0.8sec in each scan with easy handling, simple merge to whole face, harmless and fast process. In the HyungSang medicine, the inspection of the facial shape includes the Dam(gall bladder) - Bang Kwang(urinary bladder) body, the Jung${\cdot}$Gi${\cdot}$Shin${\cdot}$Hyul, the six merdian types etc. And we will collect the evidence based date verifing in the HyungSang clinical medicine. As we will analyze the facial whole form and the size${\cdot}$length${\cdot}$angle of the facial part, put the facial form's standardization on a solid foundation.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

Studies on Bionomics and Control of Cutworms (거세미나방류의 생태 및 방제에 관한 연구)

  • Kim H.S.;Kim S.H.;Choi K.M.
    • Korean journal of applied entomology
    • /
    • v.19 no.4 s.45
    • /
    • pp.243-248
    • /
    • 1980
  • Experiments were conducted to study on bionomics and control of cutworms; Agrotis tokionis, A. ipsilon, A. fucosa in Suweon, 1978-1979. A. ipsilon and A. fucosa had two or three generations and A. tokionis had one generation a year. A large number of A. toikonis occured at the end of September, and the major peaks of the first generation of A. tokionis and A. fucosa were in mid-June, the second generation in mid-August, and the third generation was at the end of September. These cutworms laid many eggs on the lower surface of curved downward leaf of Chinese cabbage and the larvae later than 3rd instar began to cut the basal part of stem and then pulled into the soil. A parasite of A. tokionis, a braconid wasp, Meteorus rubens, and two unidentified Ichneumnid wasps were found. Mocap and Volaton gave effective control to the cutworms but Volaton should be applied not to contact with plant.

  • PDF

A study on the correction of the connection part of the underground facility 3D model and the correction of irregularities (지하시설물 3차원 모델 연결부 보정 및 요철보정에 관한 연구)

  • Kim, Sung Su;Han, Kyu Won;Heo, Sung Seo;Han, Sang Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.429-435
    • /
    • 2021
  • The integrated underground space map shows the underground facility(water supply, sewage, gas, electric power, communication, heating), underground structures (subway, underpass, underground walkway, underground parking lot, underground shopping mall, common ward), ground(drilling, coffin, geology) refers to a map constructed so that a total of 15 types of underground information can be checked at a glance on a three-dimensional basis. The purpose of this study is to develop a technology to correct the problem of curved surface processing and the unevenness of underground facility pipelines that occur in converting 2D underground facility data into 3D-based underground space integrated map(3D underground facility model). do it with. To this end, we first investigated and reviewed the domestic and foreign status of technologies that generate data on underground facilities based on three dimensions, and developed a surface correction algorithm and an unevenness correction algorithm to solve practical problems. Algorithms to verify the developed algorithm This applied correction program was developed. Based on the above process, the three-dimensional model of the underground facility could be produced identically to reality. This study is judged to have significance as a basic study to improve the utilization of the underground spatial integration map.

Lane Detection on Non-flat Road Using Piecewise Linear Model (굴곡진 도로에서의 구간 선형 모델을 이용한 차선 검출)

  • Jeong, Min-Young;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.322-332
    • /
    • 2014
  • This paper proposes a robust lane detection algorithm for non-flat roads by combining a piecewise linear model and dynamic programming. Compared with other lane models, the piecewise linear model can represent 3D shapes of roads from the scenes acquired by monocular camera since it can form a curved surface through a set of planar road. To represent the real road, the planar roads are created by various angles and positions at each section. And dynamic programming determines an optimal combination of planar roads based on lane properties. Experiment results demonstrate the robustness of proposed algorithm against non-flat road, curved road, and camera vibration.

Resistivity Tomography in an Inclined Borehole to Surface Purvey Using a Pole-dipole Array (단극-쌍극자 배열을 이용한 경사시추공-지표 탐사에서 전기비저항 토모그래피)

  • Park Jong-Oh;Kim Hee-Joon;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.255-263
    • /
    • 2006
  • In an electrical tomographic survey using an inclined borehole with a pole-dipole array, we must consider several factors: a singular point associated with zero potential difference, a spatial discrepancy between electrode and nodal point in a model due to a inclined borehole, and a variation of geometric factors in connection with a irregular topography. Singular points which are represented by the normal distance from current source to the ground surface can be represented by serveral regions due to a irregular topography of ground surface. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Test on a three-dimensional (3-D) synthetic model produces good images of conductive target and shoves stable convergence.