• Title/Summary/Keyword: 3-D CT image

Search Result 435, Processing Time 0.027 seconds

3D Overhead Modeling Using Depth Sensor

  • Song, Eungyeol;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.83-86
    • /
    • 2014
  • Purpose This paper was purposed to suggest the method to produce the supportive helmet (head correction) for the infants who are suffering from plagiocephaly and to evaluate the level of transformation through 3D model. Method Either of CT or X-ray restored images has been used in making the supportive helmet (Head correction) in general, but these methods of measuring have problems in cost and safety. 3D surface measurement technology was suggested to solve such matters. Results It was to design the transformed model of the head within 0.7cm in average by scanning the surface of head and performing 3D restoration with marching cube and the changing rate of the head was compared in numerical data with 3D model. Conclusion The suggested methods displayed the better performance than the conventional method in respect of the speed and cost.

A comparative study of the deviation of the menton on posteroanterior cephalograms and three-dimensional computed tomography

  • Lee, Hee Jin;Lee, Sungeun;Lee, Eun Joo;Song, In Ja;Kang, Byung-Cheol;Lee, Jae-Seo;Lim, Hoi-Jeong;Yoon, Suk-Ja
    • Imaging Science in Dentistry
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • Purpose: Facial asymmetry has been measured by the severity of deviation of the menton (Me) on posteroanterior (PA) cephalograms and three-dimensional (3D) computed tomography (CT). This study aimed to compare PA cephalograms and 3D CT regarding the severity of Me deviation and the direction of the Me. Materials and Methods: PA cephalograms and 3D CT images of 35 patients who underwent orthognathic surgery (19 males and 16 females, with an average age of $22.1{\pm}3.3years$) were retrospectively reviewed in this study. By measuring the distance and direction of the Me from the midfacial reference line and the midsagittal plane in the cephalograms and 3D CT, respectively, the x-coordinates ($x_1$ and $x_2$) of the Me were obtained in each image. The difference between the x-coordinates was calculated and statistical analysis was performed to compare the severity of Me deviation and the direction of the Me in the two imaging modalities. Results: A statistically significant difference in the severity of Me deviation was found between the two imaging modalities (${\Delta}x=2.45{\pm}2.03mm$, p<0.05) using the one-sample t-test. Statistically significant agreement was observed in the presence of deviation (k=0.64, p<0.05) and in the severity of Me deviation (k=0.27, p<0.05). A difference in the direction of the Me was detected in three patients (8.6%). The severity of the Me deviation was found to vary according to the imaging modality in 16 patients (45.7%). Conclusion: The measurement of Me deviation may be different between PA cephalograms and 3D CT in some patients.

Evaluation of Automatic Image Segmentation for 3D Volume Measurement of Liver and Spleen Based on 3D Region-growing Algorithm using Animal Phantom (간과 비장의 체적을 구하기 위한 3차원 영역 확장 기반 자동 영상 분할 알고리즘의 동물팬텀을 이용한 성능검증)

  • Kim, Jin-Sung;Cho, June-Sik;Shin, Kyung-Sook;Kim, Jin-Hwan;Jeon, Ho-Sang;Cho, Gyu-Seong
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Living donor liver transplantation is increasingly performed as an alternative to cadaveric transplantation. Preoperative screening of the donor candidates is very important. The quality, size, and vascular and biliary anatomy of the liver are best assessed with magnetic resonance (MR) imaging or computed tomography (CT). In particular, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Preoperative liver segmentation has proved useful for measuring the graft volume before living donor liver transplantations in previous studies. In these studies, the liver segments were manually delineated on each image section. The delineated areas were multiplied by the section thickness to obtain volumes and summed to obtain the total volume of the liver segments. This process is tedious and time consuming. To compensate for this problem, automatic segmentation techniques have been proposed with multiplanar CT images. These methods involve the use of sequences of thresholding, morphologic operations (ie, mathematic operations, such as image dilation, erosion, opening, and closing, that are based on shape), and 3D region growing methods. These techniques are complex but require a few computation times. We made a phantom for volume measurement with pig and evaluated actual volume of spleen and liver of phantom. The results represent that our semiautomatic volume measurement algorithm shows a good accuracy and repeatability with actual volume of phantom and possibility for clinical use to assist physician as a measuring tool.

  • PDF

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Quantitative evaluation of iterative reconstruction algorithm for high quality computed tomography image acquisition with low dose radiation : Comparison with filtered back projection algorithm (저선량.고화질 CT 영상 획득을 위한 반복적 재구성 기법의 정량적 평가 : 필터보정 역투영법과의 비교 분석)

  • Ha, Seongmin;Shim, Hackjoon;Chang, Hyuk-Jae;Kim, Seonkyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.274-277
    • /
    • 2013
  • CT(Computed Tomography)영상에서 선량과 화질은 중요한 요소이다. 선량은 환자에게 직접적으로 악영향을 끼치는 요소이며, 화질은 환자의 병변을 판단하는데 매우 중요하게 작용한다. 반복적 재구성 알고리즘을 이용하면 저선량 영상에서도 고화질의 영상을 얻을 수 있는지 FBP와 정량적, 정성적으로 비교하였다. 촬영 프로토콜은 관전압 80, 100, 120kVp에서 관전류를 동일하게 200mA로 촬영하여 획득하였으며, 정량적 평가를 위해 SD(Standard Deviation), SNR(Signal to Noise Ratio), MTF(Modulation Transfer Function)를 측정하여 분석하였다. 선량은 80kVp일 때 가장 낮았으며, 120kVp일 때 가장 높았다. 80kVp의 영상을 Toshiba 사(社)의 AIDR 3D(Adaptive Iterative Reduction integrated into $^{SURE}Exposure$)로 재구성하고, 120kVp의 영상에 FBP로 재구성한 다음 정량적 비교를 한 결과 AIDR 3D를 적용한 영상의 SD가 낮게 나왔으며, SNR이 높게 나타났고, MTF 곡선은 유사하게 나타났다. 그리고 FWHM(Full Width at Half Maximum) 값의 오차가 거의 없었다. 결론적으로 AIDR 3D는 저선량에서도 높은 화질을 나타냄을 확인하였다.

  • PDF

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

Remarks on Visualizations of 3D Virtual Reality (3차원 가상현실 시각화에 관한 고찰)

  • Kimn, Ha-Jine
    • Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.88-98
    • /
    • 2010
  • It is now the era of ubiquitous which is highly integrated on the convergence technologies with not only ICT bul also BT, CT, NT and ST. Through this convergence technology, the understanding on visualization of 3D virtual reality which make more human's 5 feelings activate beyond the wall of time and space is recently very important. We search the visualization technology of 3D virtual reality and estimate the future development, and give the perspectives. Since the visualization technology of virtual reality is strongly depended on 3D computer graphics representations, 3D image visualization technology being able to get immersion has been possible. The new paradym on computer interactions is implemented by making images augment on the base of the PC and display equipments. The studies is established on the direction of more intensity on humanity. And also, these technologies will be able to achieve actively the implementations for ubiquitous society dueing to get the high-technology on the superhighway networks.

  • PDF

Development of Immersive Augmented Reality interface for Minimally Invasive Surgery (증강현실 기반의 최소침습수술용 인터페이스의 개발)

  • Moon, Jin-Ki;Park, Shin-Suk;Kim, Eugene;Kim, Jin-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF