• Title/Summary/Keyword: 3-D ANALYSIS

Search Result 16,724, Processing Time 0.043 seconds

3-Dimensional analysis for class III malocclusion patients with facial asymmetry

  • Kim, Eun-Ja;Ki, Eun-Jung;Cheon, Hae-Myung;Choi, Eun-Joo;Kwon, Kyung-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.168-174
    • /
    • 2013
  • Objectives: The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods: A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The patients were classified into two groups. Patients in group 1 were evaluated for symmetry in the middle 1/3 of the face and asymmetry in the lower 1/3 of the face, and those in group 2 for asymmetry of both the middle and lower 1/3 of the face. Results: In group 1, significant differences were observed in nine values out of 14 values. Values included three from anteroposterior cephalometric radiograph measurement values (cant and both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). In group 2, comparison between 2D and 3D showed significant difference in 10 factors. Values included four from anteroposterior cephalometric radiograph measurement values (both maxillary height, both body height) and six from lateral cephalometric radiographs (both ramus length, both lateral ramal inclination, and both gonial angles). Conclusion: Information from 2D analysis was inaccurate in several measurements. Therefore, in asymmetry patients, 3D analysis is useful in diagnosis of asymmetry.

Evaluation of Maximum Lateral Pressure on the 3D Printed Irregular-Shaped Formwork by Finite Element Analysis (3D 프린터로 제작된 비정형 거푸집의 최대 측압에 대한 유한요소해석)

  • Lee, Jeong-Ho;Ju, Young K.;Kim, Hak-Beom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • The F3D(Free-Form Formwork 3D Printer) technology that manufactures EPS(Expanded Polystyrene) formworks for irregular-shaped concrete structures by 3D printers was developed to reduce the cost and time. Because of weak strength and low elastic modulus of the EPS, structural performance including lateral pressure by fresh concrete of the formwork that consisted of EPS should be investigated. In order to calculate lateral pressures acting on formwork, several variables including sizes, shapes of formwork, tangential force(fricition) between fresh concrete and formwork, and material properties of fresh concrete should be considered. However, current regulations have not considered the properties of concrete, only focused on vertical formwork. Galleo introduced 3-dimensional finite element analysis models to calculate lateral pressure on formwork. Thus, proposed finite element analysis model based on previous studies were verified for vertical formwork and irregular-shaped formwork. The test results were compared with those by FEM analysis. As a result, the test agrees well with the analysis.

Classification of adult male torso shapes using 3D body scan data (3D 스캔 데이터에 의한 성인 남성의 체간부 형태 유형화)

  • Hong, Eun-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.165-179
    • /
    • 2019
  • This study used 3D body scan data to classify body shapes according to the torso shape of adult males aged 20-75 years. This data will be provided so that the apparel industry can make apparel products corresponding to body characteristics by age. The study used 1,796 adult males between the ages of 20 and 75 and the 3D body shape data of the '5th Research on National Standard Anthropometry'. For data analysis, the program SPSSWIN Ver. 17.0 was used to calculate the mean and frequency allowing for a factor analysis, cluster analysis, analysis of variance, and Duncan test. To classify body shape according to the torso shape of adult males, this study considered nine factors: 'horizontal size of torso,' 'vertical size of body,' 'curve of torso and waist-abdomen flatness ratio,' 'length of torso,' 'shape of neck area,' 'degree of lateral curve,' 'difference between front and back interscye length,' 'shoulder armscye shape,' and 'chest flatness ratio.' Based on the results of the factor analysis, the torso shapes of adult males were classified into five types. Type 1 is "upright body with flat, curvy shape", Type 2 is "curve sway back body type", Type 3 is "flat, abdominally obese body", Type 4 is "obese, crooked body" and Type 5 is "thick sway front body type." named.

A Study on Performance Improvement of TDMA Noise in a GSM Mobile Phone using the Noise Measure Method (잡음 대책법을 이용한 GSM 방식 이동전화기의 TDMA 잡음 개선에 관한 연구)

  • Oh, Se-Kab;Choi, Jae-Myeong;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.406-411
    • /
    • 2009
  • In this paper, we study the method of noise analysis for analysing TDMA noise in a GSM mobile phone and describe the cause of TDMA noise. And we reduced noise by 9dB, 3.5dB, 6dB, using MIC shielding, equipped bead or capacitance, connected PCB ground based on the difference analysis method, which is one of common noise analysis methods.

  • PDF

2D Analysis Approach Method of a Small BLDC Motor Having Permanent Magnet Overhang Structure (영구자석 오버행 구조를 가진 소형 BLDC 모터의 2차원 해석 접근 방법)

  • Kim, Hoe-Cheon;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.39-44
    • /
    • 2012
  • This paper deals with the characteristic analysis of small power brushless DC (BLDC) motor considering the rotor magnet overhang flux. In the driving characteristics analysis using 2D FEA (Finite Element Analysis), the rotor magnet overhang effect can't be considered and it should be neglected. To consider rotor magnet overhang effect, 3D FEA should be required. But 3D FEA requires very long calculation time even though the high specification computer is used. In this paper, the 3D electromagnetic model of BLDC motor is approximated as the 2D electromagnetic model considering overhang effect. In this paper, the concept of overhang coefficient is applied, and the coefficient according to load torque variance is deduced.

능동 비틀림 제어에 용이한 블레이드의 스파형상 선정

  • Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.184-190
    • /
    • 2015
  • On wide variety of fields, studies on active twist control are becoming more active. For effective twist control, blades have to have low torsional stresses with high torsional deformations to the same magnitude of torque acting on its cross-section. In this study, 2D sectional analysis and 3D finite element analysis were made for 5 different blades with each having different cross - sections which have different spars. The results from 2D sectional analysis, were then put into 3D blade deformation and stress calculations which lead to analysis. Outcomes from 2D and 3D analysis, showed that on the same torque and concentrated load conditions, the blade with 'C' shaped spar was the best of all the blades which were used in this study.

  • PDF

Design of 500W Class UMGT for Power Generation (500W급 발전용 초소형 가스터빈 설계)

  • Seo, Jeong-Min;Choi, Bum-Seok;Park, Jun-Young;Park, Cheol-Hoon;Kim, You-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2011
  • Design of 500W class UMGT(Ultra Micro Gas Turbine) for power generation is conducted. Basic design parameters are obtained by cycle analysis. Off-design performances are predicted by 1D aerodynamic design and 1D performance analysis of compressor and turbine. 3D impellers are designed and 3D performance analysis is carried out to predict the performance characteristics of UMGT. 1D and 3D performance analysis show similar results. Structure analysis is conducted to select materials. Titanium Alloy is proposed for structural stability.

Automatic Generation of Analysis Model Using Multi-resolution Modeling Algorithm (다중해상도 알고리즘을 이용한 자동 해석모델 생성)

  • Kim M.C.;Lee K.W.;Kim S.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This paper presents a method to convert 3D CAD model to an appropriate analysis model using wrap-around, smooth-out and thinning operators that have been originally developed to realize the multi-resolution modeling. Wrap-around and smooth-out operators are used to simplify 3D model, and thinning operator is to reduce the dimension of a target object with simultaneously decomposing the simplified 3D model to 1D or 2D shapes. By using the simplification and dimension-reduction operations in an appropriate way, the user can generate an analysis model that matches specific applications. The advantage of this method is that the user can create optimized analysis models of various simplification levels by selecting appropriate number of detailed features and removing them.

Study on the UHF-band Variable Attenuator Using the 3-dB Coupler (UHF대역 3-dB 커플러(Coupler)를 이용한 가변 감쇄기(Attenuator)에 대한 연구)

  • 박경태
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2001
  • A design and implementation method for the UHF-band(800MHz) variable attenuator using the 3dB coupler is proposed. The 90 degree, 3-dB Coupler is used for the variable attenuator. The principal theory for the 3-dB coupler is introduced. The 3-dB Coupler is designed by the mathematical analysis and a computer simulation tool. A PIN diode is used for the variable resistor at UHF-band. The variable attenuator using the 3-dB coupler and the PIN diode is designed and implemented. The measured results for the variable attenuator by a network analyzer show that the insertion loss is below -l0dB, and the continuous variable attenuation range is about 10dB.

  • PDF

Simplification analysis of suction pile using two dimensions finite element modeling

  • Hendriyawan, Hendriyawan;Primananda, M. Abby;Puspita, Anisa Dwi;Guo, Chao;Hamdhan, Indra Noer;Tahir, M.M.;Pham, Binh Thai;Mu'azu, M.A.;Khorami, Majid
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2019
  • This paper presents the results of parametric analyses to compute the axial capacity of a suction pile using 2D and 3D finite element approaches. The study is intended to simplify the process of analyzing suction piles from 3D to 2D model. The research focuses on obtaining the coefficient to be applied into the 2D model in order to obtain results that are as close as possible to the 3D model. Two 2D models were used in the analysis, namely the plane strain and axisymmetric models. The analyses were performed using two actual offshore soil data of the North and West Java Indonesia. The study reveals that the simplification of model through 2D Finite Element is achievable by applying the appropriate coefficient to the stiffness parameters. The results show that the simplified model of the 2D FEA provides more conservative results (with the difference between 2% to 7%) than the 3D FEA.