• Title/Summary/Keyword: 3-수준 자율주행

Search Result 34, Processing Time 0.02 seconds

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

A Study on Performance of Content Store Replacement Algorithms over Vehicular CCN (VCCN에서 Content Store 교체 알고리즘의 성능에 관한 연구)

  • Choi, Jong-In;Kang, Seung-Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.495-500
    • /
    • 2020
  • VANET (Vehicular Ad Hoc Network), an example of an ad hoc vehicular networks, becomes one of the popular research areas together with the self-driving cars and the connected cars. In terms of the VANET implementation, the traditional TCP/IP protocol stack could be applied to VANET. Recently, CCN (Content Centric Networking) shows better possibility to apply to VANET, called VCCN (VANET over CCN). CCN maintains several data tables including CS (Content Store) which keeps track of the currently requested content segments. When the CS becomes full and new content should be stored in CS, a replacement algorithm is needed. This paper compares and contrasts four replacement algorithms. In addition, it analyzes the transmission characteristics in diverse network conditions. According to the simulation results, LRU replacement algorithm shows better performances than the remaining three algorithms. In addition, even the size of CS is small, the network maintains a reasonable transmission performance. As the CS size becomes larger, the transmission rate increases proportionally. The transmission performance decreases when the network is crowded as well as the number of transmission hops becomes large.

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.9-21
    • /
    • 2022
  • In this paper, we developed a 100% detection system for entering and leaving vehicles by improving the detection rate of existing detection cameras based on the LiDAR sensor, which is one of the core technologies of the 4th industrial revolution. Since the currently operating parking lot depends only on the recognition rate of the license plate number of about 98%, there are various problems such as inconsistency in the entry/exit count, inability to make a reservation in advance due to inaccurate information provision, and inconsistency in real-time parking information. Parking status information should be managed with 100% accuracy, and for this, we built a parking lot entrance/exit detection system using LIDAR. When a parking system is developed by applying the LIDAR sensor, which is mainly used to detect vehicles and objects in autonomous vehicles, it is possible to improve the accuracy of vehicle entry/exit information and the reliability of the entry/exit count with the detected sensing information. The resolution of LIDAR was guaranteed to be 100%, and it was possible to implement so that the sum of entering (+) and exiting (-) vehicles in the parking lot was 0. As a result of testing with 3,000 actual parking lot entrances and exits, the accuracy of entering and exiting parking vehicles was 100%.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.