• 제목/요약/키워드: 3-레벨 T-type 인버터

검색결과 24건 처리시간 0.017초

계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구 (A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter)

  • 김진수;양오
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

예측제어를 이용한 T-형 3-레벨 인버터의 중성점 전압제어 (The DC-link Voltage Balancing of the Three-Level T-type Inverter Using the Predictive Control)

  • 김태훈;이우철
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.311-318
    • /
    • 2016
  • This paper is a study on the neutral point voltage balancing of the three-phase 3-level T-type inverter using the predictive control techniques. Recently, multi-level inverter has been attracting attention as the advantages such as efficiency improving and harmonic reduction. Especially, the T-type inverter topology is advantageous in low DC-link voltage. However, in case of the prediction control, it takes a lot of time, because there exist 27 voltage vectors and it has to be calculated according to the respective voltage vectors. Therefore, in this paper, we propose a method to implement predictive control techniques while reducing the operation time. In order to reduce the operation time, the predictive control is implemented by using the minimum voltage vector except for the unnecessary voltage vector. The result of the implemented predictive control is added to the SPWM by using the offset voltage. It was verified through simulation and experimental results.

미션 프로파일을 고려한 단상 5-레벨 태양광 NPC 인버터의 전력 반도체 소자 수명 분석 (Lifetime Evaluation of Power Devices of Single-Phase 5-Level NPC Inverters Considering Mission Profile of PV Systems)

  • 류태림;최의민
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.221-227
    • /
    • 2022
  • The reliability improvement of PV systems is an important factor in reducing the cost of PV energy because it is closely related to the annual energy production as well as the maintenance cost of PV systems. The reliability of PV inverters plays a key role in the reliability of PV systems because it is regarded as one of the most reliable critical parts of PV systems. The lifetime evaluation of PV inverters considering the mission profile in the design phase plays an important role in reliability design to ensure the required lifetime of PV inverters. In this paper, the lifetime of representative single-phase T-type and I-type NPC inverters are comparatively evaluated by considering the mission profile of a PV system recorded at Iza, Spain. Furthermore, the effect of the pulse width modulation methods on the lifetime is also discussed. The lifetime evaluation of PV inverters is performed at the component-level first and then the system level by considering all power devices.

도시철도 역사 신재생에너지 활용을 위한 멀티레벨 인버터 개발 (Multilevel Inverter Development to Utilize Renewable Energy in Urban Railway Station)

  • 신승권;김형철;정호성;박종영;현병수
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.324-330
    • /
    • 2015
  • Energy Saving Methods in existing railway vehicle are considered by active approach such as regenerative energy storage and utilization, eco driving, etc. On the other hands, energy saving measures in railway station are operated by passive method such as reduction of operating time in ventilation system, cooing system and power equipment. To reduce energy and for independence in railway system, it requires an active energy saving measures. It needs to its own power source besides the power source of electric supply company such as renewable energy and regenerative energy and take the advantage of power storage system and stored power are used in optimum time. This paper deal with 3-level NPC inverter and T-type NPC inverter that used in various multi-level topology applicable to the railway system.