• Title/Summary/Keyword: 3 cylinder engine

Search Result 456, Processing Time 0.029 seconds

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS (DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF

Combustion Characteristics of HCCI Engine Fueled DME and Natural Gas(Unbalance of Cylinder-to-Cylinder and Effect of EGR) (DME/천연가스 HCCI 기관의 연소특성(기통 간 불균형과 EGR의 영향))

  • Jung, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • HCCI engines fueled DME and natural gas have been studied on single-cylinder engine due to availability of reducing on $NO_X$ and PM simultaneously without deteriorating into high thermal efficiency, and thus it is clarified that higher maximum engine load is achieved as DME equivalence is smaller. In this study, combustion tests were accomplished on multi-cylinder engine for practical use of it. When minimum DME equivalence achieved maximum engine load on single-cylinder engine was applied to 4-cylinders engine, there was in unstable running condition that engine revolution fluctuated greatly and cyclically. It is the reason what misfire occurred intermittently with one the same as minimum DME equivalence on single-cylinder due to increase in energy for ignition at No. 1 cylinder with lower cylinder liner temperature. Maximum engine load was achieved by adopting EGR, though it decreased because of knocking at smaller engine load than single-cylinder due to increase in minimum DME equivalence.

A study about reducing Turbocharger Pulsation of 3 cylinder engine (3 기통 엔진의 터보 차저 맥동 저감에 대한 연구)

  • Seo, Kwanghyun;Cho, Sungyong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.667-669
    • /
    • 2014
  • Development of 3 cylinder turbo charger engine is increasing due to engine down-sizing, cost reduction and emission regulations. However, 3 cylinder engine makes higher Exhaust manifold gas pressure(P3) pulsation than 4 cylinder engine and it generate boosting air with high pulsation. The mechanical waste-gate turbocharger just controlled by the boosting air has higher movement because of this high pulsation boosting air. This causes high vibrations to wasted gate and accelerate wear of the linkage system. So we need to understand out of the exhaust gas pressure pulsation changed by turbocharger compressor pressure(P2) Pulsation. In this study, we discuss how to prevent to abnormal movement of the turbo actuator by stabilized P2 Pulsation.

  • PDF

An Analysis of Diesel Engine Cylinder Block-Liner-Gasket-Head Compound by Finite Element Method (유한요소법을 이용한 디젤 엔진의 실린더블록-라이너-가스킷-에드 구조물에 대한 해석)

  • 김주연;안상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.147-158
    • /
    • 1997
  • This paper presents the analysis technique and procedure of main engine components-cylinder block, cylinder liners, gasket and cylinder head-using the finite element method, which aims to assess mainly the potential of lower oil consumption in a view point of engine design and to decide subsequently the accuracy of engine design which was done. The F.E. model of an engine section consisting of one whole cylinder and two adjacent half cylinders is used, whereby the crankcase is cut off at the block bottom deck. By means of a 3-dimensional F.E. model-including cylinder block, liners, gasket, cylinder head, bolts and valve seat rings as separate parts a linear analysis of deformations and stresses was performed for three different loading conditions;assembly, thermal and gas loads. For the analysis of thermal boundary conditions also the temperature field had to be evaluated in a subsequent step.

  • PDF

Analysis of the thermal behaviors of the cylinder block of a small gasoline engine (소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 김병탁;박진무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

Evaluate the Effect of the Intake Manifold Geometry on Cylinder-to-cylinder Variation Using 1D-3D Coupling Analysis (1D-3D 연동해석을 통한 흡기 매니폴드 형상이 실린더별 유동 분배에 미치는 영향 평가)

  • Park, Sangjun;Cho, Jungkeun;Song, Soonho;Cho, Jayun;Wang, Taejoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2016
  • CNG engine has been used as a transportation because of higher thermal efficiency and lower CO2 and particulate matter. However its out put power is decreased due to cylinder-to-cylinder variation during the supply of air-fuel mixture to the each cylinder. It also causes noise and vibration. So in this study, 1D engine simulation model was validated by comparison with experiment data and 3D CFD simulation was conducted to steady-state flow analysis about each manifold geometry. Then, the effects of various intake manifold geometries on variation were evaluated by using 1D-3D coupling analysis at engine speed of 2100 rpm range in 12 L CNG engine. As a result, variation was improved about 4 % though 3D CFD analysis and there was a variation within 3 % using 1D-3D coupling analysis.

Influence of Compression Ratio on Engine Performance in Heavy-duty LPG Single-cylinder Engine (대형 LPG 단기통엔진에서 압축비가 기관성능에 미치는 영향)

  • 김진호;최경호
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.160-165
    • /
    • 2002
  • The heavy-duty LPG-fueled single cylinder engine was designed and developed as a fundamental equipment for analyzing combustion processes and emission performances. The cylinder head and the piston crown were modified to fire the LPG in the engine. The flywheel was also fabricated to minimize the vibration of the single cylinder engine. The size of bore and stroke of the tested engine are 130 mm and 140 mm, respectively. Compression ratios were varied 8 to 9 with different piston crown shapes. The developed single cylinder engine operates at 1,000 rpm for this work. The major conclusions of this work are; (1) the power of the developed engine was peaked at the condition of equivalence ratio 1.0 at three different compression ratios; (2) the power is slightly increased with the increase of compression ratio; (3) the optimum ignition timing is retarded with the increase of compression ratio ranged 2 to 10 crank angle.

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

In-Cylinder Air Flow Characteristics of the HCCI Engine along with Variable Intake Ports (HCCI 엔진의 흡기포트 입구부 변화에 따른 유동특성 비교)

  • Kim, Min-Jung;Lee, Sang-Kyoo;Rhim, Dong-Ryul;Chung, Jae-Woo;Kang, Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.272-275
    • /
    • 2008
  • One of the important operating factors for the air-fuel pre-mixed conditions in an HCCI engine is an in-cylinder flow. In this study, unsteady in-cylinder air flow characteristics in a diesel engine as a reference engine of an HCCI engine development were numerically analysed. Unsteady flow analyses were conducted with the combination of 3 intake port inlets, then the in-cylinder air flow distribution and swirl ratio results from a case were compared with the results from the other cases.

  • PDF