• 제목/요약/키워드: 3 cylinder engine

검색결과 455건 처리시간 0.034초

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석 (Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS)

  • 서권희;민한기;천인범
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF

DME/천연가스 HCCI 기관의 연소특성(기통 간 불균형과 EGR의 영향) (Combustion Characteristics of HCCI Engine Fueled DME and Natural Gas(Unbalance of Cylinder-to-Cylinder and Effect of EGR))

  • 정석호
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.13-18
    • /
    • 2010
  • HCCI engines fueled DME and natural gas have been studied on single-cylinder engine due to availability of reducing on $NO_X$ and PM simultaneously without deteriorating into high thermal efficiency, and thus it is clarified that higher maximum engine load is achieved as DME equivalence is smaller. In this study, combustion tests were accomplished on multi-cylinder engine for practical use of it. When minimum DME equivalence achieved maximum engine load on single-cylinder engine was applied to 4-cylinders engine, there was in unstable running condition that engine revolution fluctuated greatly and cyclically. It is the reason what misfire occurred intermittently with one the same as minimum DME equivalence on single-cylinder due to increase in energy for ignition at No. 1 cylinder with lower cylinder liner temperature. Maximum engine load was achieved by adopting EGR, though it decreased because of knocking at smaller engine load than single-cylinder due to increase in minimum DME equivalence.

3 기통 엔진의 터보 차저 맥동 저감에 대한 연구 (A study about reducing Turbocharger Pulsation of 3 cylinder engine)

  • 서광현;조성용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.667-669
    • /
    • 2014
  • Development of 3 cylinder turbo charger engine is increasing due to engine down-sizing, cost reduction and emission regulations. However, 3 cylinder engine makes higher Exhaust manifold gas pressure(P3) pulsation than 4 cylinder engine and it generate boosting air with high pulsation. The mechanical waste-gate turbocharger just controlled by the boosting air has higher movement because of this high pulsation boosting air. This causes high vibrations to wasted gate and accelerate wear of the linkage system. So we need to understand out of the exhaust gas pressure pulsation changed by turbocharger compressor pressure(P2) Pulsation. In this study, we discuss how to prevent to abnormal movement of the turbo actuator by stabilized P2 Pulsation.

  • PDF

유한요소법을 이용한 디젤 엔진의 실린더블록-라이너-가스킷-에드 구조물에 대한 해석 (An Analysis of Diesel Engine Cylinder Block-Liner-Gasket-Head Compound by Finite Element Method)

  • 김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.147-158
    • /
    • 1997
  • This paper presents the analysis technique and procedure of main engine components-cylinder block, cylinder liners, gasket and cylinder head-using the finite element method, which aims to assess mainly the potential of lower oil consumption in a view point of engine design and to decide subsequently the accuracy of engine design which was done. The F.E. model of an engine section consisting of one whole cylinder and two adjacent half cylinders is used, whereby the crankcase is cut off at the block bottom deck. By means of a 3-dimensional F.E. model-including cylinder block, liners, gasket, cylinder head, bolts and valve seat rings as separate parts a linear analysis of deformations and stresses was performed for three different loading conditions;assembly, thermal and gas loads. For the analysis of thermal boundary conditions also the temperature field had to be evaluated in a subsequent step.

  • PDF

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

1D-3D 연동해석을 통한 흡기 매니폴드 형상이 실린더별 유동 분배에 미치는 영향 평가 (Evaluate the Effect of the Intake Manifold Geometry on Cylinder-to-cylinder Variation Using 1D-3D Coupling Analysis)

  • 박상준;조정근;송순호;조자윤;왕태중
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-168
    • /
    • 2016
  • CNG engine has been used as a transportation because of higher thermal efficiency and lower CO2 and particulate matter. However its out put power is decreased due to cylinder-to-cylinder variation during the supply of air-fuel mixture to the each cylinder. It also causes noise and vibration. So in this study, 1D engine simulation model was validated by comparison with experiment data and 3D CFD simulation was conducted to steady-state flow analysis about each manifold geometry. Then, the effects of various intake manifold geometries on variation were evaluated by using 1D-3D coupling analysis at engine speed of 2100 rpm range in 12 L CNG engine. As a result, variation was improved about 4 % though 3D CFD analysis and there was a variation within 3 % using 1D-3D coupling analysis.

대형 LPG 단기통엔진에서 압축비가 기관성능에 미치는 영향 (Influence of Compression Ratio on Engine Performance in Heavy-duty LPG Single-cylinder Engine)

  • 김진호;최경호
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.160-165
    • /
    • 2002
  • LPG 연료를 사용하는 대형 단기통엔진은 연소과정과 배기성능을 파악하기 위해서 설계.제작되었다. 실린더헤드와 피스톤 크라운은 LPG 연소를 위해서 변경되었다. 또한 플라이휠은 단기통엔진의 진동을 최소로 하기 위해서 제작되었다. 실험용 단기통엔진의 실린더내경과 행정은 각각 130mm와 140mm이다. 압축비는 피스톤 크라운 형상을 다르게 하여 8에서 9로 변경되었다. 본 연구를 위해서 제작된 단기통엔진은 1,000rpm에서 운전되었다. 본 연구의 주요 결론은 (1)제작된 엔진의 출력은 3가지 다른 압축비별로 당량비 1.0에서 최고를 나타낸다. (2) 압축비 증가에 따라서 출력이 약간 증간한다. (3) 최적 점화시기는 크랭크각으로 2에서 10까지 압축비의 증가와 함께 지각되어진다.

가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究) (An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine)

  • 권기린;고장권;홍성찬
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구 (A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine)

  • 정동수;서승우;오승묵;엄종호;장영준
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF