• Title/Summary/Keyword: 3 Point bending test

Search Result 371, Processing Time 0.025 seconds

FEM Analysis of Smart Skin Structure Specimen (스마트 스킨 구조물 시편의 유한요소 해석)

  • 전지훈;황운봉
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • FEM analysis of the smart skin structure, and application of the sandwich structures investigated. The honeycomb manufactures only provide stillness of thickness direction and transverse shear modulus. Although these are dominant mechanical properties. the other mechanical properties are needed in FEM analysis. Hence, this work shows procedures of obtaining those mechanical properties. Honeycomb material was assumed to be ar, isotropic material and properties are estimated by its dominant honeycomb properties. The other honeycomb properties are then obtained by mechanical properties of Nomex. Buckling test and three point bending test were simulated by ABAQUS. Both the shell and solid element models were used. The results were compared with experimental results and analytical approaches. They showed good agreements. This study shows a guideline of FEM analysis of smart skin structure using commercial a FEM package.

Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate (긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가)

  • Hong, Ki-Nam;Han, Sang-Hoon;Lee, Byong-Ro;Gwon, Yong-Gil;Woo, Sang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Fracture property of steel fiber reinforced concrete at early age

  • Fu, Chuan-Qing;Ma, Qin-Yong;Jin, Xian-Yu;Shah, A.A.;Tian, Ye
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.31-47
    • /
    • 2014
  • This research is focused on obtaining the fracture property of steel fiber reinforced concrete(SFRC) specimens at early ages of 1, 2, 3 and 7-day, respectively. For this purpose, three point bending tests of nine groups of SFRC beams with notch of 40mm depth and different steel fiber ratios were conducted. The experimental results of early age specimens were compared with the 28-day hardened SFRC specimens. The test results indicated that the steel fiber ratios and curing age significantly influenced the fracture properties of SFRC. A reasonable addition of steel fiber improved the fracture toughness of SFRC, while the fracture energy of SFRC developed with curing age. Moreover, a quadratic relationship between splitting strength and fracture toughness was established based on the experiment results. Additionally, afinite element (FE) method was used to investigate the fracture properties of SFRC.A comparison between the FE analysis and experiment results was also made. The numerical analysis fitted well with the test results, and further details on the failure behaviors of SFRC could be revealed by the suggested numerical simulation method.

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

An Estimation of Deformation for Composites by DIC (DIC에 의한 복합재료 변형측정)

  • Kwon, Oh-Heon;Kang, Ji-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • The estimation of deformation and strain for the twill-weave carbon fiber reinforced plastic composite(CFRP) during the test with a digital image correlation system were implemented experimentally. The carbon fiber reinforced plastic composites have been developed as the edge technology materials. The plain, twill and satin weave types are commonly used for the CFRP composites. Thus, it is essential to find the deformation characteristics for those types of CFRP more easily. Especially the DIC method can express the visual strain distributions at the full range of the interested areas in the structures. In this study, the mechanical properties of twill-weave CFRP composite and the variation of strains in a full field of the specimen were estimated. The experiments were performed under a tensile loading and 3-point bending test with strain gages. Futhermore the DIC deformation results were estimated for the comparison. The results showed the deformation and strain contours visually well in all region of the interested areas and so usefulness for the safety control of the structures.

Evaluation of Modulus of Elasticity of Wood Exposed to Accelerated Weathering Test by Measuring Ultrasonic Transmission Time (촉진 열화 목재의 초음파 전달 시간 측정을 통한 탄성 계수의 평가)

  • Park, Chun-Young;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • In this study, accelerated weathering test was performed with wood, a major material for wooden cultural building. In order to evaluate the deterioration of wood, ultrasonic transmission times were measured to evaluate dynamic modulus of elasticity (MOE), which was verified by determining static MOE using three-point bending test. Ultrasonic transmission time was decreased with an increase in the weathering time levels (0, 500, 1000 hours) while it increased in 1500 and 2000 hours. Distribution of dynamic and static MOE was similar to that of the ultrasonic transmission time measurements. The results mean that the measurement of ultrasonic transmission time was very effective to evaluate MOE of wooden cultural buildings for their preservation and management. This method could be utilized to assess wooden cultural buildings as a way of preserving them in a scientific manner.

Mechanical Properties of YBCO Superconductors with Impregnation Materials (보강재를 첨가한 YBCO 초전도체의 기계적강도 변화)

  • Lee, Nam-Il;Jang, Gun-Eik;Lee, Sang-Heon;Kim, Chan-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.247-248
    • /
    • 2006
  • Bulk YBCO 초전도체는 top-seeded melt-growth 방법으로 제조되었다. YBCO bulk는 Epoxy resin과 $AgNO_3$를 보강해 초전도체의 기계적 강도를 향상하고자 하였다. Epoxy resin은 보강 재료인 STYCAST 2850-FT와 경화제인 CATALYST 24LV 를 100:5 비율로 혼합하여 제조한 후 mould에 넣고 $66^{\circ}C$에서 2시간 열처리 하였다 (rotary pump로 진공 분위기 조성). $AgNO_3$$350^{\circ}C$에서 2시간, $450^{\circ}C$에서 1시간 열처리 하여 Ag와 $NO_3$의 분리 후 YBCO bulk에 Ag가 보강되도록 하였다. Epoxy resin 과 분리된 Ag는 YBCO bluk의 crack과 void에 침투되는 것을 SEM과 광학현미경을 통해 관찰할 수 있었다. Three point bending test를 이용하여 보강 전후의 YBCO bulk의 기계적 강도를 측정하였다. 보강 후의 YBCO bluk의 기계적 강도는 보강 전에 비해 향상된 결과를 확인할 수 있었고, Epoxy resin과 $AgNO_3$를 보강한 YBCO는 기계적 강도 향상에 높은 신뢰성을 보이고 있다.

  • PDF

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Comparison of mechanical properties of all ceramic crown on zirconia blocks (지르코니아 블록 종류에 따른 전부도재관의 기계적 특성 비교)

  • Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: This study provided the basic data for selecting the zirconia blocks by comparing the mechanical properties of the all ceramic crown between the domestic, import, translucent and shade blocks that were used in clinically. Methods: Currently, the most commercial block of five types(one import and two domestic block which is the translucent and shade) were used. It were elucidated by means of three point bending test, hardness test, FE-SEM observations and EDX analysis. The results were analyzed using a one-way ANOVA and Scheffe post hoc test for significant findings. Results: For flexural strength, LT specimen was the highest as 733.1 MPa, followed by JT specimen(712.0 MPa), ZT specimen(646.0 MPa), LS specimen(553.1 MPa), JS specimen(429.0 MPa). One-way ANOVA showed statistically significant difference between groups for flexural strength(p<0.05). For hardness, ZT specimen was the highest as 1556.5 Hv, followed by JT specimen(1540.3 Hv), LT specimen(1512.3 Hv), JS specimen(1472.0 Hv), LS specimen(1353.3 Hv). One-way ANOVA showed statistically significant difference between groups for hardness(p<0.05). Conclusion: Domestic block was higher than import block for flexural strength, and translucent block was higher than shade block for flexural strength. However, all blocks showed clinically acceptable range. There was no significant difference in hardness between domestic and import blocks. And significant difference was observed in translucent and shade blocks.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.