• Title/Summary/Keyword: 3 Dimensional Nozzle

Search Result 178, Processing Time 0.023 seconds

A Numerical Analysis of Thrust Development and Control using Multi-Nozzle (다발 노즐을 사용한 추력 발생 제어에 관한 수치적 연구)

  • Park, Hyung-Ju;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.288-291
    • /
    • 2010
  • Numerical analysis was conducted on thrust vector control using multi-nozzle system. The nozzle using flow valve switch to control mass flow of multi scarfed nozzle to manage thrust was considered. The operating characteristics of scarfed nozzle, thrust component and moment of multi nozzle in terms of mass flow rate were investigated by three dimensional flow simulation.

  • PDF

Schlieren Visualization of the Thrust Vector Flowfield in a Supersonic Two-Dimensional Nozzle (2차원 초음속 추력편향노즐을 이용한 쉴리렌 가시화 실험연구)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.30-37
    • /
    • 2011
  • The thrust vectoring concept has been used for use in new advanced supersonic aircraft. This study presents the performance characteristics of the thrust vectoring nozzle by visualizing the shock behaviors with Schlieren method. The scaled models were designed and manufactured to see the shock behaviors of the various airflow condition. Also we executed experimental tests to see the geometrical effects of the thrust vector nozzle by changing pitch angle and length of pitch flaps. From this study we could understand the supersonic flow characteristics of the thrust vector nozzle. The total thrust of thrust vector nozzle is diminished by increasing the flap angle. But there is an optimum flap length ratio for attaining the highest thrust level and proper pitch effect.

Steam Turbine Stage Design Using Flow Analysis (유동 해석을 이용한 증기 터빈 Stage 설계)

  • Kwon, G.B.;Kim, Y,S.;Cho, S.H.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.309-314
    • /
    • 2001
  • The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.

  • PDF

3-Dimensional Computations within the Flow Passage of the Steam Turbine Nozzle with and without Tip Clearance (증기 터빈 노즐에서의 익단 간극에 의한 3차원 유동장의 수치 해석적 연구)

  • Jo, Su-Yong;O, Gun-Seop;Kim, Su-Yong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.25
    • /
    • pp.55-65
    • /
    • 1995
  • Three-dimensional incompressible turbulent flow fields within the passage of the steam turbine nozzle with/without tip clearance have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The extended k-e model is applied to modeling the Reynolds stresses. Grids in the computational domain are generated by solving the Poisson's equations to improve the smoothness and orthogonality. Flow losses, secondary flow, velocity profiles, and deviation angles are obtained. The computated results without tip clearance show good agreement with the experimental data.

  • PDF

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Numerical Prediction of Unsteady Flows through Whole Nozzle-Rotor Cascade Channels with Partial Admission

  • Sasao, Yasuhiro;Monma, Kazuhiro;Tanuma, Tadashi;Yamamoto, Satoru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • This paper presents a numerical study for unsteady flows in a high-pressure steam turbine with a partial admission stage. Compressible Navier-Stokes equations are solved by the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe's approximate Riemann solver, and the LU-SGS scheme. The SST-model is also solved for evaluating the eddy-viscosity. The unsteady two-dimensional flows through whole nozzle-rotor cascade channels considering a partial admission are numerically investigated. 108 nozzle passages with two blockages and 60 rotor passages are simultaneously calculated. The influence of the flange in the nozzle box to the lift of rotors is predicted. Also the efficiency of the partial admission stage changing the number of blockages and the number of nozzles is parametrically predicted.

Experiments on the Flow Characteristics of Circular Multiple Jets Arrayed Circumferentially (원주상으로 배열된 다중 원형 제트의 유동 특성)

  • Jin, Hak-Su;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.306-312
    • /
    • 2007
  • This paper describes the flow characteristics of circular multiple jet investigated by hot-wire anemometry. The nozzle arrays were classified into two cases; 6- or 7-nozzle located circumferentially in equal interval without or with a central jet. The flow field was measured according to the number of nozzles when the Reynolds number based on the nozzle exit is about $10^4$. Mean velocity, Reynolds shear stress and turbulent kinetic energy were investigated in the downstream of jets. The Tollmien's theory holds for downstream only when a nozzle locates at the center. Jet interaction is influenced due to with or without a center nozzle. In addition, the two-dimensional numerical computation was conducted for 3-nozzle case to obtain the general flow structure near the nozzle exit, which verifies the formation of the recirculation region with captive vortices, that is, the evidence of the interaction between jets.