• Title/Summary/Keyword: 3 Beam Method

Search Result 2,181, Processing Time 0.026 seconds

Development of a Rigid- Ended beam Element and a Simplified 3-Dimensional Analysis Method for Ship Structures

  • Seo, Seung-Il;Lim, Sung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.13-24
    • /
    • 1999
  • In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane element. And also, the proposed simplified 3- dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the simplified 3-dimensional method is revealed to have good computing efficiency due to unnecessity of the elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

Development of Received Acoustic Pressure Analysis Program of CHA using Beam Tracing Method (Beam Tracing 기법을 이용한 수동 소나 센서의 수신 음압해석 프로그램 개발)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun;Jeon, Jae Jin;Seo, Young-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • In order to predict acoustic pressure distributions by exterior incident wave at Cylindrical Hydrophone Array (CHA) sensor's positions, acoustic pressure analysis is performed by using beam tracing method. Beam tracing method is well-known of reliable pressure analysis methods at high-frequency range. When an acoustic noise source is located at the center of rectangular room, acoustic pressure analysis is performed by using both beam tracing method and Power Flow Boundary Element Method (PFBEM). By comparing with results of beam tracing method and those of PFBEM, the accuracy of beam tracing method is verified. We develop the CHA pressure analysis program by verified beam tracing method. The developed software is composed of model input, sensor array creator, analysis option, solver and post-processor. We can choose a model option of 2D or 3D. The sensor array generator is connected to a sonar which is composed of center position, bottom, top and angle between sensors. We also can choose an analysis option such as analysis frequency, beam number, reflect number, etc. The solver module calculates the ray paths, acoustic pressure and result of generating beams. We apply the program to 2D and 3D CHA models, and their results are reliable.

A Pilot Study of the Scanning Beam Quality Assurance Using Machine Log Files in Proton Beam Therapy

  • Chung, Kwangzoo
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.129-133
    • /
    • 2017
  • The machine log files recorded by a scanning control unit in proton beam therapy system have been studied to be used as a quality assurance method of scanning beam deliveries. The accuracy of the data in the log files have been evaluated with a standard calibration beam scan pattern. The proton beam scan pattern has been delivered on a gafchromic film located at the isocenter plane of the proton beam treatment nozzle and found to agree within ${\pm}1.0mm$. The machine data accumulated for the scanning beam proton therapy of five different cases have been analyzed using a statistical method to estimate any systematic error in the data. The high-precision scanning beam log files in line scanning proton therapy system have been validated to be used for off-line scanning beam monitoring and thus as a patient-specific quality assurance method. The use of the machine log files for patient-specific quality assurance would simplify the quality assurance procedure with accurate scanning beam data.

3-D Profile Measurement System of Live Human Faces for the '93 Taejon Expo Kumdori Robot Scupltor (93 대전엑스포 꿈돌이 조각가로보트의 인물형상 측정시스템)

  • 김승우;박현구;김문상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.670-679
    • /
    • 1995
  • This paper presents the 3-D profile measurement system of live human faces, which was developed specially for 'KUMDORI sculptor robot' of the '93 Taejon Exposition. '93 Taejon EXPO. The basic principle for measurement adopts the slit beam projection which is a method of measuring 3-D surface profiles using geometric optics between the slit beam and the CCD camera. Since the slit beam projection consumes long measuring time, it is unfit to measure the 3-D profiles of living objects as human. Therefore, the projection type slit beam method which consumes short measuring time is newly suggested. And an algorithm to reconstruct the 3-D profile from the deformed images using finite approximated calibration is suggested and practically implemented. The projection type slit beam method was applied to spectators in a period of '93 Taejon EXPO. The measurement results show that the technique is suitable for 3-D face profile measurement on a living body.

A Study on the Indoor Sound-field Analysis by Adaptive Triangular Beam Method (적응 삼각형 빔 방법에 의한 실내음장 해석)

  • 조대승;성상경;김진형;최재호;박일권
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.217-224
    • /
    • 2003
  • In this study, the adaptive triangular beam method(ATBM) considering different sound reflection coefficients and angles of a triangular beam on two or more planes as well as diffraction effect is suggested. The ATBM, subdividing a tracing triangular beam into multiple triangular beams on reflection planes, gives reliable and convergent sound-field analysis results without the dependancy on the number of initial triangular beam segmentation to search sound propagation paths from source to receiver. The validity of the method is verified by the comparison of numerical and experimental results for energy decay curve and steady-state sound pressure level of rooms having direct, reflective and diffractive sound paths.

Nonlinear vibration of Timoshenko beam due to moving loads including the effects of weight and longitudinal inertia of beam

  • Wang, Rong-Tyai
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.197-209
    • /
    • 2000
  • The effects of weight and axial inertia of a beam are taken into account for studying the nonlinear vibration of the Timoshenko beam due to external loads. The combination of Galerkins method and Runge-Kutta method are employed to obtain the dynamic responses of the beam. A concentrated force and a two-axle vehicle traversing on the beam are taken as two examples to investigate the response characteristics of the beam. Results show that the effect of axial inertia of the beam increases the fundamental period of the beam. Further, both the dynamic deflection and the dynamic moment of the beam obtained with including the effect of axial inertia of the beam are greater than those of the beam without including that effect of the beam.

A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator (H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구)

  • Park, Ju-Yong;Kim, Yong-Uk
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.635-659
    • /
    • 2015
  • In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.

Vibration analysis of a Timoshenko beam carrying 3D tip mass by using differential transform method

  • Kati, Hilal Doganay;Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • Dynamic behaviour of beam carrying masses has attracted attention of many researchers and engineers. Many studies on the analytical solution of beam with concentric tip mass have been published. However, there are limited works on vibration analysis of beam with an eccentric three dimensional object. In this case, bending and torsional deformations of beam are coupled due to the boundary conditions. Analytical solution of equations of motion of the system is complicated and lengthy. Therefore, in this study, Differential Transform Method (DTM) is applied to solve the relevant equations. First, the Timoshenko beam with 3D tip attachment whose centre of gravity is not coincident with beam end point is considered. The beam is assumed to undergo bending in two orthogonal planes and torsional deformation about beam axis. Using Hamilton's principle the equations of motion of the system along with the possible boundary conditions are derived. Later DTM is applied to obtain natural frequencies and mode shapes of the system. According to the relevant literature DTM has not been applied to such a system so far. Moreover, the problem is modelled by Ansys, the well-known finite element method, and impact test is applied to extract experimental modal data. Comparing DTM results with finite element and experimental results it is concluded that the proposed approach produces accurate results.

Holographic Grating Erasing Characteristics by Non-polarized Beam in Amorphous Chalcogenide Thin Films

  • Lee, Ki-Nam;Park, Jeong-Il;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.141-144
    • /
    • 2006
  • In the present work, we investigated the holographic grating erasing method by means of the optical method. It was formed the grating under the interference of holographic recording He-Ne laser beams on chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film with various film thickness and erased the holographic grating by non-polarized He-Ne laser beam. As the results, the recording grating erased the 80 % of formed grating by non-polarized He-Ne laser beam. It was confirmed that the erasing characteristics by non-polarized laser beam need to improve the focusing of beam and the control of beam intensity. And then it can be expected as the application possibility of rewritable holographic memory technology.