• Title/Summary/Keyword: 3 차원 형상 복원

Search Result 114, Processing Time 0.019 seconds

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.

Recognition and Reconstruction of 3-D Polyhedral Object using Model-based Perceptual Grouping (모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원)

  • 박인규;이경무;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.957-967
    • /
    • 2001
  • 본 논문에서는 모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원에 관한 새로운 기법을 제안한다. 2차원 입력 영상과 여기에서 추출된 특징들의 3차원 특징을 거리 측정기를 이용하여 추출하여 인식 및 복원의 기본 특징으로 이용한다. 이 때, 모델의 3차원 기하학적 정보는 결정 트리 분류기에 의하여 학습되며 지각적 그룹핑은 이와 같은 모델 기반으로 이루어진다. 또한, 1차 그룹핑의 결과로 얻어진 3차원 직선 특징간의 관계는 Gestalt 그래프로 표현되며 이것의 부그래프 분할을 통하여 인식을 위한 후보 그룹이 생성된다. 마지막으로 각각의 후보 그룹은 3차원 모델과 정렬되어 가장 잘 부합되는 그룹을 인식 결과로 생성하게 된다. 그리고 정렬의 결과로서 2차원 텍스춰를 추출하여 3차원 모델에 매핑함으로써 실제적인 3차원 형상을 복원할 수 있다. 제안하는 알고리듬의 성능을 평가하기 위하여 불록 영상과 지형 모델 보드 영상에 대하여 실험을 수행하였다. 실험 결과, 모델 기반의 그룹핑 기법은 결과 그룹의 수를 상당히 감소시켰으며 또한 잡음과 가리워짐에 강건한 인식과 복원 결과가 얻어졌다.

  • PDF

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.

Camera and Flash Calibration for 3D Shape Acquisition on a Smartphone (스마트폰에서의 3차원 형상 취득을 위한 카메라와 플래시의 보정 기법)

  • Won, Jae-Hyun;Park, In-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.294-295
    • /
    • 2011
  • 본 논문에서는 스마트폰의 카메라와 플래시를 이용한 Shape from Shading 방법으로 3차원 형상 취득을 위한 카메라와 플래시의 보정 기법을 제시한다. 영상에서 관찰되는 화소 값은 카메라의 반응곡선에 의해 비선형적으로 표현되고 렌즈의 왜곡으로 인해 3차원 형상 복원에 오차를 발생 시킨다. 기하학적(geometric) 보정과 방사량(radiometric) 보정, 플래시 보정을 수행함으로써 3차원 형상 복원의 오차를 줄인다.

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

3D Terrain Reconstruction Using 2D Laser Range Finder and Camera Based on Cubic Grid for UGV Navigation (무인 차량의 자율 주행을 위한 2차원 레이저 거리 센서와 카메라를 이용한 입방형 격자 기반의 3차원 지형형상 복원)

  • Joung, Ji-Hoon;An, Kwang-Ho;Kang, Jung-Won;Kim, Woo-Hyun;Chung, Myung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • The information of traversability and path planning is essential for UGV(Unmanned Ground Vehicle) navigation. Such information can be obtained by analyzing 3D terrain. In this paper, we present the method of 3D terrain modeling with color information from a camera, precise distance information from a 2D Laser Range Finder(LRF) and wheel encoder information from mobile robot with less data. And also we present the method of 3B terrain modeling with the information from GPS/IMU and 2D LRF with less data. To fuse the color information from camera and distance information from 2D LRF, we obtain extrinsic parameters between a camera and LRF using planar pattern. We set up such a fused system on a mobile robot and make an experiment on indoor environment. And we make an experiment on outdoor environment to reconstruction 3D terrain with 2D LRF and GPS/IMU(Inertial Measurement Unit). The obtained 3D terrain model is based on points and requires large amount of data. To reduce the amount of data, we use cubic grid-based model instead of point-based model.

Registration for 3D Object Reconstruction from Multiple Range Images Considering Texture (텍스처를 고려한 다중 레인지 이미지의 3차원 형상 복원을 위한 정합)

  • 최가나;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.644-646
    • /
    • 1999
  • 본 논문은 한 물체에 대해 스캔 위치 정보가 없는 여러 시점의 레인지 이미지들로부터 3차원 형상 복원을 위한 정합 알고리즘을 제안한다. 기존의 정합 방법은 스캔 위치 정보와 기하학 정보를 이용하여 레인지 이미지들을 정렬시킨 반면, 본 논문의 정합 방법은 스캔 위치와는 독립적으로 수행되며 기하학 정보와 텍스쳐 정보를 함께 이용하여 정렬시킨다. 그러므로 텍스쳐가 있는 여러 장의 레인지 이미지들로부터 3차원 형상을 보다 정확하고 효율적으로 복원할 수 있다.

  • PDF

Multi-View Image Deblurring for 3D Shape Reconstruction (3차원 형상 복원을 위한 다중시점 영상 디블러링)

  • Choi, Ho Yeol;Park, In Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.47-55
    • /
    • 2012
  • In this paper, we propose a method to reconstruct accurate 3D shape object by using multi-view images which are disturbed by motion blur. In multi-view deblurring, more precise PSF estimation can be done by using the geometric relationship between multi-view images. The proposed method first estimates initial 2D PSFs from individual input images. Then 3D PSF candidates are projected on the input images one by one to find the best one which are mostly consistent with the initial 2D PSFs. 3D PSF consists with direction and density and it represents the 3D trajectory of object motion. 야to restore 3D shape by using multi-view images computes the similarity map and estimates the position of 3D point. The estimated 3D PSF is again projected to input images and they replaces the intial 2D PSFs which are finally used in image deblurring. Experimental result shows that the quality of image deblurring and 3D reconstruction improves significantly compared with the result when the input images are independently deblurred.

3D Shape Acquisition Using HDRI and Structured Lighting (HDR 영상과 구조적 조명을 이용한 3차원 형상 취득 기법)

  • Park, Tae-Jang;Won, Jae-Hyun;Lee, Man-Hee;Park, In-Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.198-200
    • /
    • 2010
  • 구조적 조명 기법은 그레이코드 패턴광을 물체에 투영시켜 정확하게 3차원 형상 정보를 복원 할 수 있는 방법이다. 그러나 물체에 투영되는 그레이코드 패턴광이 카메라에 정확하게 인식 되어야 보다 정밀하게 3차원 좌표를 추정할 수 있다. 즉, 주변광의 밝기가 패턴광의 밝기에 비해 무시할 수 없을 정도로 밝은 경우 카메라가 물체와 투영된 패턴을 정확히 인식하기 어렵다. 본 논문에서는 구조적 조명 기법이 주변의 밝기에 따라 제한적인 문제점을 해결하기 위해 High Dynamic Range Imaging (HDRI) 알고리즘을 적용시켜 보다 넓은 동적 범위의 밝기 영역에서 3차원 형상을 정확하게 복원하는 방법을 제안한다. 실험결과 HDRI를 이용하여 복원하였을 경우 그렇지 않은 경우에 비해 복원 정밀도가 크게 개선되는 것을 확인할 수 있다.

  • PDF

Progressive occupancy network for 3D reconstruction (3차원 형상 복원을 위한 점진적 점유 예측 네트워크)

  • Kim, Yonggyu;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.65-74
    • /
    • 2021
  • 3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.