• Title/Summary/Keyword: 3 차원 측정기

Search Result 169, Processing Time 0.021 seconds

The Spray Characterization Using Planar Imaging Technique (평면 이미지 기법을 이용한 분무 특성 해석)

  • Lee, Kyung-Jin;Jung, Ki-Hoon;Yoon, Young-Bin;Jeong, Kyung-Seok;Jeung, In-Seuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • The characteristics of spray nozzle have been quantified with the measurement of fluorescence and Mie scattering images. To correct the attenuation of the incident light sheet, a sequential double-pass light sheet system and the geometrical averaging of two images was implemented. Quantitative mass flux distribution of spray was obtained from fluorescence image. 3-D image is reconstructed using 2-D radial images. Sauter mean diameter (SMD) distribution was determined using the ratio of fluorescence signal intensity and Mie scattering signal intensity and the values were quantified with PDP A data. The measurement of mass flux and SMD using planar imaging technique agee with PDP A data fairly well in the low density region. However, in dense region, there are significant errors caused by secondary scattering. It was found that the planar imaging technique provides many advantages over the point measurement technique, such as PDP A, and can be implemented for quantitative measurement, especially in low density region.

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

Preparation and Self-Confidence to Response to Emergent, Acute or Life-threatening Health Crisis among School Nurses in South Korea (학교내 응급상황에 대한 준비 실태와 보건교사의 응급처치 수행자신감)

  • Kim, Ji-yeon;Jeong, Ihn Sook
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.21 no.3
    • /
    • pp.21-34
    • /
    • 2020
  • 배경 및 목적: 본 연구는 학교 내 응급상황(천식 위기, 알레르기 반응, 저혈당 위기, 발작, 심폐정지, 출혈/골절, 머리/목 상해, 열성질환, 중독, 질식)에 대한 행정 차원과 물품구비 차원에서의 준비 실태, 그리고 응급처치 수행자신감을 파악하는데 목적이 있다. 방법: 단면조사연구로 274명의 보건교사를 대상으로 하였으며, 자가보고형 조사지를 이용하여 대상자와 학교의 일반적 특성, 학교 내 응급상황에 대한 행정·물품 준비 실태, 그리고, 응급처치 수행자신감 등 3개 영역의 자료를 수집하였다. 자료수집은 2018년 2월 1일부터 2018년 7월 31일까지 실시하였고, 자료분석은 기술통계, t-검정과 분산분석을 이용하였다. 결과: 대부분의 학교에서 응급상황 관리계획이 있었으나, 응급상황별로 천식 위기는 46.7%, 알레르기 반응은 58.4%에서만 관리계획을 갖추고 있었다. 산소, 혈당측정기, 자동제세동기, 경추고정장치 등은 85% 이상의 학교에서 보유하고 있었으나, 기관확장제 흡입기, 에피네프린 주사제, 흡인기 등은 거의 갖추고 있지 않았다. 응급상황 수행자신감은 5점 만점에 2.67점 (발작관리) 에서 3.55점 (심폐정지관리)이었으며, 일부 응급상황에 대해서 의료기관 근무경력이 증가함에 따라 수행자신감이 증가하였다. 결론: 대부분의 학교에서 응급관리계획을 수립하고 있었으나, 응급상황별 관리계획을 수립한 경우는 반 정도에 불과하였다. 보건교사의 학교 내 응급상황에 대한 응급처치 수행자신감은 전체적으로 낮게 나타남에 따라, 이들의 역량강화를 위한 체계적인 교육과 멘토링 프로그램이 요구된다.

Touch-Trigger Probe Error Compensation in a Machining Center (공작기계용 접촉식 측정 프로브의 프로빙 오차 보상에 관한 연구)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.661-667
    • /
    • 2011
  • Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool.

Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor (다자유도 탄소섬유판 힘/토크 센서 개발)

  • Lee, Dong-Hyeok;Kim, Min-Gyu;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

The Analysis of Vibration characteristics for Vacuum Cleaner Fan Motor Using 3-D Laser Vibrator (3차원 레이저 진동 측정기를 이용한 초고속 진공청소기 모터의 진동특성분석)

  • 김재열;김우진;심재기;김영석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.399-405
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000 rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

  • PDF

An analysis of crosstalk in hihg-speed packaging interconnects using the finite difference time domain method (시간 영역 유한 차분법을 이용한 고속 패키지 접속 선로의 누화 해석)

  • 남상식;장상건;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1975-1984
    • /
    • 1997
  • In this paper, we analyzed the frequency characteristics and the crosstalk of the adjacent parallel lines and the crossed lines in high-speed packaging interconnections by using the three-dimensional finite difference time domain (3D FDTD) method. To analyze the actual crosstalk phenomena in the transmission of the high-speed digital sgnal, the step pulse with fast rise time was used for the source excitation signal instead of using the Gaussian pulse that is generally used in FDTD. To veify the theoretical resutls, the experimental interconnection lines that were fabricated on the Duroid substrate($\varepsilon_{r}$=2.33, h=0.787 [mm]) were tested by TDR(time domain reflectometry). The results show good agreement between the analyzed results and the tested outcomes.

  • PDF

Performance Analysis of a Pulse Separation Device for a F-type Multi-Pulse Rocket Motor (F형 다중펄스 로켓모타 적용 펄스분리장치 특성 분석)

  • Lee, Dong-Won;Lee, Won-Bok;Kim, In-Sik;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.24-27
    • /
    • 2012
  • In this study, the full scale flight type Dual-Pulse Rocket Motor(DPRM) with the bulkhead type Pulse Separation Device(PSD) was designed, manufactured, and fire-tested. The bursting time and pressure of PSD were analyzed by the pressure, thrust and vibration results of static fire tests and ablation of PSD was measured with 3-D coordinate measuring machine. As a result, PSD requirements, bursting conditions and thermal safety, were satisfied.

  • PDF

Direction detection technique of radioactive contaminants based on rotating collimator (회전형 콜리메이터 기반 방사능 오염원의 방향탐지 기법)

  • Hwang, Young-Gwan;Song, Keun-Young;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1519-1527
    • /
    • 2020
  • AGeneral radiation measuring devices have been developed in the form of spatial dose rate detection devices that measure dose rates to radioactive contaminant and 2D or 3D imaging devices for radioactive contamination information. Each of these radiation detection techniques has advantages. The advantages of both detection devices are necessary to minimize personal injury and rapid decontamination in the area of a radioactive accident. In this paper, we proposed a technique that can measure the dose rate and direction information about the radioactive pollutant source in real time using a detection sensor, a rotating body, and a directional shield for radioactive pollutant detection. The rotational-based detection device is configured to check the dose rate and direction using the location information of the rotator and measurement value. We proposed a measurement technique for vertical and horizontal directions through multiple holes. It was confirmed that the measurement error for direction information was less than 1% when detected in the horizontal direction.

The Behavior Measurement of Simulated Ground by Digital Close-Range Photogrammetry (수치근접사진측량을 이용한 모형지반 거동량 측정)

  • Lee, Hyo-Seong;Ju, Jae-Woo;Jung, Jae-Sung;Ahn, Ki-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.59-65
    • /
    • 2008
  • Digital close-range photogrammetric technique can measure and describe 3D geometric farm from 2D image. This technique is increasingly applied in the field of sciences. In the fields of civil and mechanical engineering, which need precise measurements for design, expensive measuring equipments are widely used. In occasions where visual inspection is required in addition to other forms of measurements, appropriate measuring equipments have not been yet available. This study utilizes digital close-range photogrammetric technique to quantitatively analyze behavior patterns before and after destruction from test model of reinforced-soil wall. Then the results are compared with the measurements obtained using digital theodolite to verify the reliability of the proposed method.