• Title/Summary/Keyword: 3축 구속 응력

Search Result 26, Processing Time 0.023 seconds

Forces and Displacements of Outrigger-Braced Structures with a Pair of Coupled Cores (병렬코아를 갖는 아웃리거구조물의 응력과 변위)

  • 정동조;이태희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.291-299
    • /
    • 2003
  • Based on the continuum approach, an investigation is made to get the forces and displacements of laterally loaded outrigger braced structures with a pair of coupled cores, and to show the effect of stiffening outriggers on the behavior of the structure. From the condition that the rotation of the core at the outrigger level is matched with the rotation of the corresponding outrigger, the outrigger restraining moment is derived analytically. From this, the core moment diagram, the column axial forces, and the horizontal displacements of the structure may be determined. Comparisons with the results by the program MIDAS-GEN for the structural models, have shown that this analysis can give reasonably accurate results for outrigger-braced structures with a pair of coupled cores. And a lateral displacement at the top of the structure is influenced by the outrigger location than the core location. Although the formulae are accurate only for idealized outrigger braced structures, they have a useful practical purpose in providing a guide to the behavior, and for making approximate estimates of the forces and displacements, in practical outrigger braced structures with a pair of coupled cores.

Flexural Capacity and Non-Linear Characteristic Evaluation of Circular Column Confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형기둥의 휨내력 및 비선형 특성에 대한 연구)

  • Lee, Kyoung Hun;Yoo, Youn Jong;Kim, Hee Cheul;Hong, Won Kee;Lee, Young Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Six full scale column specimens have been tested under the constant axial and cyclic lateral load. An equivalent stress block parameter was used to estimate flexural capacity of columns confined by carbon sheet tube. Through the non-linear regression analysis, behaviors of CFCST(Concrete Filled Carbon Sheet Tube) columns under the cyclic lateral load were estimated and compared with test results.

Long-Term Behavior of Square CFT Columns under Concentric Load (중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Lee Tae-Gyu;Kim Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.281-290
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns under central axial loading. Two loading cases are considered; (1) the load applied only at the inner concrete of the column and (2) the load applied simultaneously on both the concrete and the steel tube. Four specimens of square CFT columns were tested under the two loading cases, and basic creep test for two concrete specimens was performed to find out the creep properties of the inner concrete. Three-dimensional finite element analysis models were established and verified with the experimental results. The verification shows that the prediction for the long-term behavior of actual square CFT columns is possible from the three dimensional finite element modeling considering the bond behavior between steel tube and inner concrete. Also, experimental results and numerical calculations revealed that the bond stress Induced by the confinement pressure as well as the slip between inner concrete and steel tube were increased with time In the first loading case. However, the confinement by the loading Plate was decreased with time while increasing confinement effect by the steel tube was observed over time. In contrast no confinement effects occur in the second loading case.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Effect of Crack Tip Constraint on the Fracture Resistance Curve in CT Specimen with Same Thickness (동일두께의 CT 시편에서 구속효과가 파괴저항곡선에 미치는 영향)

  • Jo, Yeon-Je;Jang, Yun-Seok;Seok, Chang-Seong;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.529-539
    • /
    • 1996
  • Fracture resistance(J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the specimen geometry. The objective of this paper is to investigate the effect of crack tip constraint an the J-R curves in CT specimens. Fracture toughness tests on CT specimens with varying planform size were performed and test results showed that the J-R curves were increased with an increase in the planform size. Finite element analysis were also performed and the numerical results showed that this experimental phenomenon was probably due to the relaxation of crack tip constraint resulting from the stress triaxiality.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study (GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • The Geo-Reservoir Experimental Analogue Technology (GREAT) cell was designed to recreate the thermal-hydro-mechanical conditions of deep subsurface in the laboratory. This apparatus can generate a polyaxial stress field using lateral loading elements, which rotate around the longitudinal axis of a sample and is capable of performing a fluid flow test for samples containing fractures. In the present study, numerical simulations were carried out for triaxial compression tests using the GREAT cell and the mechanical behavior of samples under different conditions of lateral loading was investigated. We simulated an actual case, in which triaxial compression tests were conducted for a polymer sample without fractures, and compared the results between the numerical analysis and experiment. The surface strain (circumferential strain) of the sample was analyzed for equal and non-equal horizontal confining pressures. The results of the comparison showed a good consistency. Additionally, for synthetic cases with a fracture, we investigated the effect of the friction and type of fracture surface on the deformation behavior.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Development of a Practical Rutting Characterization Method for Bituminous Mixtures (아스팔트 콘크리트 혼합물의 소성변형시험 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The main objective of materials testing is to simulate in-situ field conditions as closely as possible, including loading conditions, climatic conditions, etc. Also, the test method should be easy, inexpensive, simple, and efficient to conduct to become an acceptable standard laboratory testing method for many agencies. Based on these reasons, a new test method employing repetitive axial loading with confinement was developed to evaluate the rutting(permanent deformation) of asphalt concrete. The new laboratory test protocol was developed based on the study of the various structural analysis and field data. This protocol divides asphalt layer(s) into three categories depending upon the depth. Different temperatures and vertical stress levels were used in these areas.

A Study on Durability of Automotive Propeller Shaft by Fatigue and Vibration (피로 및 진동에 의한 자동차 추진축의 내구성 연구)

  • Cho, Jae-Ung;Kim, Sei-Hwan;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1495-1501
    • /
    • 2011
  • Fatigue life and vibration can be analyzed at automotive propeller shaft during driving in this study. The york part is shown with the maximum equivalent stress and displacement of $1.3177{\times}10^3$Pa and $3.6148{\times}10^{-4}$m. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and Sample history. There are the most frequency as 80% in case of 'SAE bracket and the least frequency as 5% in case of Sample history'. Maximum amplitude displacement is 0.00261m at 58 Hz at forced vibration. As the result of this study is applied by the propeller shaf, the prevention on fatigue damage and the durability are predicted.

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.