• Title/Summary/Keyword: 3차 크리프

Search Result 15, Processing Time 0.023 seconds

The Creep Properties of Pb-free Sn-3.5Ag-$\chi$Cu Solder Alloys (Sn-3.5Ag-xCu무연 솔더의 크리프 성질 연구)

  • Joo, Dae-Kwon;Yu, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.141-145
    • /
    • 2001
  • Sn-3.5Ag 무연 솔더에 Cu를 첨가한 3원계 합금을 만든 후 압연과 열처리한 후 크리프 특성을 연구하였다. 모든 솔더 합금에서 1차 크리프는 거의 관찰되지 않았으며, 2차와 3차 크리프가 대부분을 차지하였고, 최소 크리프 변형율은 Cu 함량이 0.75 wt %에서 최소이었고, 응력 지수는 약 4이었으며, 파단 시간 또한 0.75 wt% Cu에서 가장 길었다. 크리프 기구는 격자 확산에 의한 전위의 상승과 전위 활주에 의한 고온 크리프임을 앞 수 있었으며, Cu의 첨가는 1 wt% 가지 연성에 큰 영향을 주지 않았으나, 1.5 wt% 첨가했을 경우 연성은 크게 감소하였다.

  • PDF

Creep behaviour of mudstone in the tertiary Duho Formation at Pohang basin (포항분지 제3기 두호층 이암의 크리프 거동)

  • 김광식;김교원
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.227-238
    • /
    • 2003
  • Understanding of a creep behavior in rocks under a constant load, due to visco-elastic properties of rock, is an essential element to predict a long term ground deformation. In order to clarify the creep characteristics of the mudstone in Duho formation at Pohang basin, deposited during Tertiary, a series of laboratory tests including physical properties, unconfined compressive strength and uniaxial creep tests, was performed. The mudstone showed a higher creep potential due to 26% of clay minerals such as illite and chlorite. The unconfined compressive strength of the rock was $462{\;}kg/\textrm{cm}^2$ in average, and four creep tests were performed under constant stress of 40 to 70 % of the strength. The creep constants in the empirical and theoretical equations were deduced from the time-strain curves obtained from the tests. Among the several equations, the empirical equation proposed by Griggs and theoretical equation of Burger’s model are appreciated as the best one to express the creep behavior of the mudstone. Instantaneous elastic strain was linearly increased with stress level but strain velocity during the first creep is decreased with a similar pattern by time lapse regardless the stress level.

Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC (일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성)

  • Choi, Baig-Gyu;Do, Jeonghyeon;Jung, Joong Eun;Seok, Woo-Young;Lee, Yu-Hwa;Kim, In Soo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.505-515
    • /
    • 2021
  • Creep properties of directionally solidified Ni-based superalloy CM247LC under various temperature and stress conditions have been investigated. In the heat-treated specimen, some portion of eutectic γ-γ' remained, and uniform cubic γ' was observed in the dendrites. At low temperature (750℃) and high stress condition, a large amount of deformation occurred during the primary creep, while the tertiary creep region accounted for most of the creep deformation under high temperature and low stress condition. γ' particles are sheared by dislocation dissociated into super lattice partial dislocations separated by stacking faults at 750℃. No stacking faults in γ' were found at and above 850℃ due to the temperature dependence of the stacking fault energy. Raft structure of γ' was found after creep test at high temperature of 950℃ and 1000℃. At 850℃, the deformation mechanism was shown to be dependent on the stress condition, and so rafting was observed only under low stress condition.

Evaluation on Creep Life Prediction of Aircraft Gas Turbine Material by AE (음향방출법에 의한 항공기용 가스터빈 재료의 크리프 수명예측 평가)

  • Kong, Y.S.;Yoon, H.K.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • There has been no report on the life prediction for gas turbine materials at high temperatures based on the creep properties and their relationship with the AE(acoustic emission) properties as a means of real-time non-destructive testing. One of the important issues is thus to develop a reliable method of evaluating creep properties by the AE technique. In this paper, the real-time evaluation of high temperature creep time and AE cumulative counts for nickel-based superalloy Udimet 720 was performed on round-bar type specimens under pure load at the temperatures of 811, 922 and 977K. The total AE cumulative counts until the starting point of secondary creep($N_1$) and that of tertiary creep($N_2$) have quantitative relationship with the tertiary creep time and the rupture time. It is thus possible to construct the life prediction system based on creep and the prevention system of tertiary creep by using AE technique.

  • PDF

An Experimental Study on the Creep Behavior of Frozen Sand (동결 사질토의 크리프 거동에 관한 실험적 연구)

  • Chae, Deokho;Kim, Youngseok;Lee, Jangguen;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.27-36
    • /
    • 2014
  • Due to the latitudinal location of Korea, the seasonally frozen ground has been focused on as research topics such as the frost heaving under the asphalt road rather than the permafrost ground. However, the recent construction of the second Korean Antarctic research station, the Jangbogo station and the participation on the development of the natural gas pipeline in Russia arouse the research interests on the behavior of the permafrost ground. At the design process of the geotechnical structures on the permafrost ground, the evaluation of the creep characteristics of the frozen soil is very crucial. Since the domestic specification on the frozen soil testing does not exist currently, it is necessary to evaluate the creep characteristics of frozen soils systematically with regard to the affecting factors. Therefore, the creep characteristics of the frozen specimens of dense Jumoonjin sand were evaluated under various loads at -5 and $-10^{\circ}C$. Based on the test results, as the load became close to the strength and the temperature became lower, the duration of the secondary creep became shorter and more distinct tertiary creep responses were observed.

On the Statistical Properties of the Parameters B and q in Creep Crack Growth Law, da/dt=B(C*)q, in the Case of Mod. 9Cr-1Mo Steel (Mod. 9Cr-1Mo강의 크리프 균열 성장 법칙의 파라메터 B와 q의 통계적 성질에 관한 연구)

  • Kim, Seon-Jin;Park, Jae-Young;Kim, Woo-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.251-257
    • /
    • 2011
  • This paper deals with the statistical properties of parameters B and q in the creep crack growth rate (CCGR) law, da/dt=B$(C^*)^q$, in Mod. 9Cr-1Mo (ASME Gr.91) steel which is considered a candidate materials for fabricating next generation nuclear reactors. The CCGR data were obtained by creep crack growth (CCG) tests performed on 1/2-inch compact tension (CT) specimens under an applied load of 5000N at a temperature of $600^{\circ}C$. The CCG behavior was analyzed statistically using the empirical equation between CCGR, da/dt and the creep fracture mechanics parameter, $C^*$. The B and q values were determined for each specimen by the least-squares fitting method. The probability distribution functions for B and q were investigated using normal, log-normal, and Weibull distributions. As far as this study is considered, it can be appeared that B and q followed the log-normal and Weibull distributions. Moreover, a strong positive linear correlation was found between B and q.

Creep and Shrinkage Strain and Comparative Analysis Between Concrete Test and Experimental Results of Lotte Super Tower (잠실제2롯데월드용 고강도 콘크리트 크리프 및 건조수축 실험결과 및 예측결과 비교분석)

  • Cha, Han-Il;Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.309-310
    • /
    • 2009
  • This study was performed as the first step of concrete materiaI research(concrete test program)of Lotte Super Tower column shortening research. Total 18 month's creep and shrinkage results were obtained from the test so far. The analysis were conducted using those results by design strength and loading age, and then validated model and equation were proposed from the result analysis and regression analysis. AC I209R Model, Bazant-Baweja B3 Model, CEB MC99 Model, & GL2000 Model, were employed for this study. The main analysis was completed on the total shrinkage strain and compliance.

  • PDF

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Creep and shrinkage properties using concrete test results and prediction models for high strength and high performance concrete (실험결과와 예측식을 통한 고강도 고성능 콘크리트의 크리프 및 건조수축 특성파악)

  • Cha, Han-Il;Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.709-712
    • /
    • 2008
  • RC super tall buildings are planned and constructed recently in domestic area. Concrete is characterized by time dependant material such as creep and shrinkage. For this properties of concrete, differential shortening is one of the main issues on super tall buildings construction. This study includes material research, which is performing as a pre design stage to solve differential shortening on Lotte Super Tower Jamsil core structure(50, 60, & 70 MPa). The major part of this study is composed with comparison and analysis between experimental data and predicted data on total shrinkage and total compliance which were used on design stage. Four models, ACI209R Model, Ba${\check{z}}$ant-Baweja B3 Model, CEB MC99 Model, & GL2000 Model, were employed to predict them. It also tries to seek a proper model for high strength and high performance concrete in the case of no concrete test.

  • PDF

Thermal Cycling Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더 접합부의 열사이클링 해석)

  • 유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on system board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. The creep life was estimated the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life was obtained at the thermal cycling test condition from $-65^{\circ}C$ to $150^{\circ}C$. It was increased about 3.5 times in comparison with that from $0^{\circ}C$ to $100^{\circ}C$. At the same conditions, the fatigue life of SMD structure as the change of pad structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF