• Title/Summary/Keyword: 3차원 CAD

Search Result 466, Processing Time 0.024 seconds

Three-Dimensional Finite element analysis of Canine and Carnassial for Observation of Dog Bite forces (개(犬)의 교합력 관찰을 위한 견치와 열육치의 3차원 유한요소 분석)

  • Park, Yu-Jin;Kim, Chi-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Purpose: This study is for the prosthesis of dogs. Observe the occlusal relation between the dog's canine and carnassial teeth. The strength and the direction of the occlusal by 3D FEM analysis. Methods: The mandibular canine and carnassial of dogs were tested. The dog's skull was contact point confirmed by dental CAD. The skull of the dog was 3D modeled by CT. The 3D model was analyzed by ABAQUS. Opening and closing movement has been a force of 100N, 200N, 300N, 500N, 1000N, 1,500N. The peak von Mises stress distribution was confirmed. Results: As occlusal force increased, stress appeared to 1.34 MPa, 3.32 MPa, 5.00 MPa, 6.19 MPa, 5.58 MPa, 5.47 MPa in left canine. and Stress was seen at 2.10 MPa, 3.08 MPa, 3.89 MPa, 5.50 MPa, 7.04 MPa, 7.18 MPa in the right canine. Stress appeared at 2.41 MPa, 3.53 MPa, 5.15 MPa, 7.28 MPa, 31.26 MPa, 67.22 MPa in the left carnassial. and Stress was seen at 1.57 MPa, 2.96 MPa, 3.76 MPa, 6.01 MPa, 20.94 MPa, 64.38 MPa in the right carnassial. Conclusion: Peak von Mises stress values were found at the peak of the canine, the buccal of the central cusp of the carnassial, and the occlusal surface of the distal cusp.

Development of 4D System Linking AR and 3D Printing Objects for Construction Porject (AR과 3D 프린팅 객체를 연계한 건설공사 4D 시스템 구성 연구)

  • Park, Sang Mi;Kim, Hyeon Seung;Moon, Hyoun Seok;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • In order to increase the practical usability of the virtual reality(VR)-based BIM object in the construction site, the difference between the virtual image and the real image should be resolved, and when it is applied to the construction schedule management function, it is necessary to reduce the image gap between the virtual completion and the actual completion. In this study, in order to solve this problem, a prototype of 4D model is developed in which augmented reality (AR) and 3D printing technologies are linked, and the practical usability of a 4D model linked with two technologies is verified. When a schedule simulation is implemented by combining a three-dimensional output and an AR object, it is possible to provide more intuitive information as a tangible image-based schedule information when compared to a simple VR-based 4D model. In this study, a methodology and system development of an AR implementation system in which subsequent activities are simulated in 4D model using markers on 3D printing outputs are attempted.

Manufacturing Information Calculation System for Production Automation of 3-dimensional Template Used to Evaluate Shell Plate Completeness (선체 곡판 완성도 평가용 3차원 곡형의 제작 자동화를 위한 생산 정보 산출 시스템)

  • Ryu, Cheolho;Son, Seunghyeok;Shen, Huiqiang;Kim, Youngmin;Kim, Byeongseop;Jung, ChangHwan;Hwang, InHyuck;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.136-143
    • /
    • 2018
  • 3-D templates are produced to evaluate completeness of the shell plates during the forming process, which is an essential step for the ship production. They are mostly produced in advance during the detail/production design stage, but occasionally they are requested by the shell plate forming department, because it is impossible to predict accurately the necessities of them at the design stage. This results in a huge loss of man-hour and a bottleneck. In order to resolve this issue while reducing the dependence on other department, the process of manufacturing the 3-D templates needs to be automated. Therefore, this study proposes an automatic system that calculates the manufacturing information of the 3-D templates with only geometric information of the shell plates. The system considers the thickness and the cutting method of the parts of the 3-D templates and some options are provided to reflect the intention of the worker.

Pattern Development of Waist / Abdominal Area of Obese Womem Using 3D Geometrical Model (3D모델을 이용한 비만체형 여성의 허리-배 부위 패턴 특성 연구)

  • Kim, So-Young;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1018-1026
    • /
    • 2005
  • Recent development of 3D scanner and software is regarded as a promising method of acquiring replicas from human body indirectly. It would be very helpful if we could predict the characteristics of 2D pattern from the simple parameters related to 3D shape for ordinary user. Therefore, in this study, investigation of 2D pattern of waist/abdominal area from the 3D geometrical model was conducted for the pattern development of waist nipper. To create body models and develop the surface of them, one ortho commonly used CAD/CAM program, IDEAS(UGS-plm solutions, USA) was used. As for the size of the models, the width, thickness, and circumference ranges of adult women's torso reported in National Anthropometric Survey of Korea (1997) were used as a standard model. Seven size variations were made by changing the width of the waist only, from 19 cm to 40 cm. Therefore, simulated body models include not only the normal body but also obese body who has wider waist and abdomen width than hip width. As results, it was found that the curvature of the unfolded 2D pattern around the abdominal area decreases as the waist width increases. As the width of the waist increases more and more, so that the comparative ratios around the torso becomes in abnormal ranges, there appears inflection points and the direction of curvature was changed. 2D Patterns obtained in this research were quantified by curvature, length of the curve and angle of deflection in the reference frame box for the convenience of the actual pattern making process. It was also possible to find that the shape of patterns of abnormal body resulted in a quite interesting change in the curves of 2D pattern, which could be applied to the custom made waist nipper for obese women.

Improvement of Cross Sectional Distance Measurement Method of 3D Human Body (3차원 인체 형상의 공극거리 측정 방법 효율성 향상을 위한 연구)

  • Kim, Min-Kyoung;Nam, Yun-Ja;Han, Hyun-Sook;Choi, Young-Lim
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.966-971
    • /
    • 2011
  • This study is designed to develop programs that analyze the distance of clothes from human skin and cross-sectional body figures based on 3D human body scan data, and to verify accuracy and efficiency of the program so that it can be used for clothing fit evaluation and 3D human body research. The auto cross-sectional imaging program was developed by using Visual C++ and OpenGL, and the 3D human body scan data were adopted to measure the space between skin and clothing. The space measurements were obtained by two widely used programs, RapidForm and AutoCAD, and a program devised by the researchers of this study. Measuring time and space measurements from different programs were compared in order to verify accuracy and efficiency of the newly-devised program. As a result, no significant difference was found in the measurements. However, the required time to measure one cross section was different within the significance level of 0.05, and the differences become more remarkable as the number of measuring and the angle of space between skin and clothing increase. Therefore, the program developed by this study is expected to be useful for research on body shapes and fit evaluation based on 3D human body scan data in the fashion field.

The Implementation of an Roof Structure Generating Tool based on the Structural Analysis of Roof Curvature in Traditional Buildings (전통건축 지붕곡 구조분석을 통한 지붕가구부 설계도구의 구현)

  • Lee, Hyunmin;Ahn, Eunyoung
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2014
  • This research proposes a method to draw a number of components for roof frame in 3D datum. It is based on the analysis of the roof curvature and their geometric relationship in the traditional wooden buildings. Correlations between the components that generate a roof surface is defined with functional formula. The design system which automatically generates 3D datum for the components is implemented by reflecting the structural mechanics for them. The suggested system provides a control function to easily draw a traditional house. In this system, the components engaged in forming a roof surface are not only automatically generated but also simply modified according to the user's request. It would improves design efficiency and ensure a various roof surface design. Furthermore it makes possible systematic drawing and standardized industrial processing. Consequently, the proposed method is expected to contribute to the popularization of traditional house constructing.

A Study on the Three-dimensional Expression of Fashionable Textiles based on Analyses of 3D Scanning and Textile Properties -Focus on the Work of Iris van Herpen- (패션소재의 입체적 표현에 대한 3D Scanning 및 소재특성 분석 연구 -Iris van Herpen의 작품을 중심으로-)

  • Lee, ReA;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.20 no.2
    • /
    • pp.124-133
    • /
    • 2016
  • Currently the fashion industry is developing to create a novel culture due to the very sensitive and knowledge-oriented advancement of the IT industry. With fast turnover of information, consumers have come to have a more diverse desire for purchasing. Cubical expression techniques, which empathizes formativeness, can be a creative expression method adjusting into the trend of this era. Along with functional aspects of consumers, even in a textile manufacturing sector, new materials are required to meet sensitive and emotional aspects. Consumers' desire for new and creative designs and the development and adoption of new materials are essential to meet their emotions. The IT industry and fashion industry are forced to combine and a 3D apparel CAD system has been developed, enabling virtual clothing to be represented within a computer virtual space. All processes such as design, pattern creation, sewing and simulation are possible in 3D level. Digital clothing can shorten the production process time and is very effective in that it can reduce clothing waste generated during the sample production. This paper reviewed the works of Dutch designer, Iris van Herpen, who has developed formative designs. She tries to build, construct, and sculpt employing diversified materials other than soft textile materials, as shown in her series of fashion shows. The materials include films, 3D printed polymers, stiff and sheer organza, and artificial leather textiles. A few characteristics of her works have been selected in order to prepare patterns exhibiting the traits. The paper further focused on the physical features of the textile materials used to express similar techniques and its various forms were reviewed.

Extracting Building Geomety from BIM for 3-D City Model (BIM으로부터 가상도시 구축용 건축물정보의 추출)

  • Goh, Il-Du;Choi, Joong-Hyun;Kim, E-Doo;Jeong, Yeon-Suk;Lee, Jae-Min
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.249-261
    • /
    • 2008
  • This study proposes a method for acquiring and managing basic information on building, which is continuously updated through construction and re-construction, in order to implement 3D-GIS based on geometric shape information and building information. First of all, distinctions between BIM and GIS information models are described, and then an overview of CityGML for virtual city and its Level of Detail are introduced. At last, a prototype for extracting building geometry from BIM data in accordance with CityGML is presented for demonstration. By using IFC data from BIM, this approach enables a lot of firms and contractors in building industry to utilize their 2D/3D, data on sites and buildings, and also to save many effects for generating exterior and interior building models which are inevitable for implementing National GIS.

  • PDF

Design Information Management System Core Development Using Industry Foundation Classes (IFC를 이용한 설계정보관리시스템 핵심부 구축)

  • Lee Keun-hyung;Chin Sang-yoon;Kim Jae-jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.98-107
    • /
    • 2000
  • Increased use of computers in AEC (Architecture, Engineering and Construction) has expanded the amount of information gained from CAD (Computer Aided Design), PMIS (Project Management Information System), Structural Analysis Program, and Scheduling Program as well as making it more complex. And the productivity of AEC industry is largely dependent on well management and efficient reuse of this information. Accordingly, such trend incited much research and development on ITC (Information Technology in Construction) and CIC (Computer Integrated Construction) to be conducted. In exemplifying such effort, many researchers studied and researched on IFC (Industry Foundation Classes) since its development by IAI (International Alliance for Interoperability) for the product based information sharing. However, in spite of some valuable outputs, these researches are yet in the preliminary stage and deal mainly with conceptual ideas and trial implementations. Research on unveiling the process of the IFC application development, the core of the Design Information management system, and its applicable plan still need be done. Thus, the purpose of this paper is to determine the technologies needed for Design Information management system using IFC, and to present the key roles and the process of the IFC application development and its applicable plan. This system play a role to integrate the architectural information and the structural information into the product model and to group many each product items with various levels and aspects. To make the process model, we defined two activities, 'Product Modeling', 'Application Development', at the initial level. Then we decomposed the Application Development activity into five activities, 'IFC Schema Compile', 'Class Compile', 'Make Project Database Schema', 'Development of Product Frameworker', 'Make Project Database'. These activities are carried out by C++ Compiler, CAD, ObjectStore, ST-Developer, and ST-ObjectStore. Finally, we proposed the applicable process with six stages, '3D Modeling', 'Creation of Product Information', 'Creation and Update of Database', 'Reformation of Model's Structure with Multiple Hierarchies', 'Integration of Drawings and Specifications', and 'Creation of Quantity Information'. The IFCs, including the other classes which are going to be updated and developed newly on the construction, civil/structure, and facility management, will be used by the experts through the internet distribution technologies including CORBA and DCOM.

  • PDF

The Virtual Factory Layout Simulation System using Legacy Data within Mixed Reality Environment (혼합현실 환경에서 레가시 데이터를 활용하는 가상 공정배치 시뮬레이션 시스템)

  • Lee, Jong-Hwan;Shin, Su-Chul;Han, Soon-Hung
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.427-436
    • /
    • 2009
  • Digital virtual manufacturing is a technology that aims for the rapid development of products and the verification of production-process in ways that are more efficient by integrating digital models within the entire manufacturing process. These digital models utilize various information technologies, such as 3D CAD and simulations. Mixed reality, which represents graphical objects for only needed parts against real scene, can bring a more enriched sense of reality to an existing virtual manufacturing system that is in a pure virtual environment, and it can reduce the time and money needed for modeling the environment. This paper suggests a method for planning virtual factory layouts based on mixed reality using legacy datathat are already constructed in the real field. To do this, we developed the method to acquire simulation data from legacy data and process this acquired data for visualization based on mixed reality. And then we construct display system based on mixed reality, which can simulate virtual factory layout with processed data. Developed system can reduce errors related with factory layout by verifying the location and application of equipments in advance before arrangement of real ones at the practical job site.