• 제목/요약/키워드: 3차원 형상합성

검색결과 54건 처리시간 0.026초

3 차원 레이저 스캔영상 채득 시 스캔각도와 횟수에 따른 정확도 (Influence of the angles and number of scans on the accuracy of 3D laser scanning)

  • 이경민;송효영;이기헌;황현식
    • 대한치과교정학회지
    • /
    • 제41권2호
    • /
    • pp.76-86
    • /
    • 2011
  • 본 연구는 3차원 레이저 스캐너를 이용하여 안면 입체영상을 재구성할 때 스캔각도와 횟수에 따른 입체영상의 정확도를 평가하고자 시행되었다. 사람의 얼굴형상을 한 두부 마네킹 10개를 대상으로 안면에 마커를 부착하고 비접촉식 3차원 레이저 스캐너를 이용하여 정면, 정면에 대해 각각 좌우 20도, 45도, 60도 측방면을 스캔하고 좌우 20도 측방면을 스캔한 2가지 영상, 정면과 좌우 20도 측방면을 스캔한 3가지 영상, 좌우 45도 측방면을 스캔한 2가지 영상, 정면과 좌우 45도 측방면을 스캔한 3가지 영상, 정면과 좌우 60도 측방면을 스캔한 3가지 영상, 정면과 좌우 20도, 60도 측방면을 스캔한 5가지 영상 등 6가지 방법으로 3차원 역설계 소프트웨어 프로그램을 이용하여 재구성한 각 방법에 따른 입체영상에서 마커간 거리를 측정하고 마네킹에서의 실측치와 비교하였다. 마네킹 실측치에 대한 레이저 스캔영상 계측치의 확대율은 0.14 - 0.26%로 나타났다. 좌우 20도 측방면을 스캔한 경우, 정면과 좌우 20도 측방면을 스캔한 경우와 좌우 45도 측방면을 스캔한 경우는 여러 계측치가 실측치와 차이를 보인 반면, 정면과 좌우 45도 혹은 정면과 좌우 60도 측방면을 스캔한 경우와 정면과 좌우 20도와 60도를 스캔한 경우는 한 계측치 (Pn-Pg')를 제외한 모든 계측항목에서 실측치와 통계적으로 유의한 차이를 보이지 않았다. 본 연구 결과는 스캔각도와 횟수가 안면 입체영상의 정확도에 영향을 미치는 것을 의미하며 정확한 재구성을 위해서는 좌우 45도 이상의 측방면을 스캔 하는 것이, 그리고 정면을 포함하여 최소 3개의 영상을 이용하여 합성하는 것이 바람직함을 시사하였다.

그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석 (Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method)

  • 강승훈;송동현;최재원;신상준
    • 한국항공우주학회지
    • /
    • 제50권12호
    • /
    • pp.889-898
    • /
    • 2022
  • 본 논문에서는 3차원 전자기장의 병렬 해석 기법을 제안하였다. 시간 조화 벡터 파동 방정식 및 유한요소 기법에 기반한 전자기장 산란 해석이 수행되었으며, 모서리 기반 요소 및 2차 흡수 경계 조건이 도입되었다. 개발한 알고리즘은 유한요소망을 분할한 뒤 각 프로세서에 할당함으로써 요소별 수치적분 및 행렬 조립 과정의 병렬화를 달성하였다. 이때 부영역 생성을 위해 그래프 분할 라이브러리인 METIS가 도입되었다. 대형 희박행렬 방정식의 계산은 다중 프론탈 기법 기반 병렬 연산 라이브러리인 MUMPS를 통해 수행되었다. 개발된 프로그램의 정확도는 Mie 이론해 및 ANSYS HFSS 결과와의 비교를 통해 검증되었다. 또한 사용된 프로세서 수에 따른 가속 지표를 측정하여 확장성을 확인하였다. 완전 전기 도체 구, 등·이방성 유전체 구 및 유도탄 예제 형상에 대한 전자기장 산란 해석이 수행되었다. 개발된 프로그램의 알고리즘은 추후 유한요소 분할 및 합성법에 활용될 예정이며, 더욱 확장된 병렬 연산 성능을 목표하고자 한다.

주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여 (An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses)

  • 이광남
    • 한국산림과학회지
    • /
    • 제70권1호
    • /
    • pp.7-16
    • /
    • 1985
  • 임목(林木)의 주체성인(主體成因)인 수간(樹幹)에 대한 각종(各種) 성장인자간(成長因子間)의 정준상관(正準相關)과 그의 관계적(關係的) 배경(背景) 및 수간(樹幹)의 총합적(總合的)인 변동분석(變動分析)에 의(依)한 수간적(樹幹的) 특징(特徵)을 파악(把握)함에 있어, 그의 최적기법(最適技法)을 탐색(探索)하기 위한 시도(試圖)로서 일본(日本)잎갈나무(Larix leptolepis)에 주성분(主成分) 및 정준상관분석법(正準相關分析法)을 도입적용(導入適用)하고, 얻어진 결과(結果)를 다음과 같이 요약(要約)한다. 1) 정형수(正形數)($x_8$)를 제외(除外)한 모든 성장인자(成長因子) 즉(卽), 수고(樹高)($x_1$), 지하고(枝下高)($x_2$), 망고(望高)($x_3$), 흉고직경(胸高直徑)($x_4$), 중앙직경(中央直徑)($x_5$), 수관폭(樹冠幅)($x_6$) 및 간재적(幹材積)($x_7$) 등(等)의 각(各) 인자간(因子間)에 강약간(強弱間)의 상관(相關)이 있으며, 특(特)히 흉고직경(胸高直徑), 수고(樹高) 및 중앙직경(中央直徑) 등(等)은 간재적(幹材積)과 고도(高度)의 상관(相關)이 있다(표(表) l 참조(參照)). 2) (1) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (2) 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (3) 상장(上長) 및 비대성장인자(肥大成長因子)를 총망라(總網羅)한 6개인자(個因子)의 합성변량(合成變量)과 간재적간(幹材積間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 각각(各各) $${(1)\;{\gamma}_{u1,v1}=0.82980^{**},\;\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3}\\{(2)\;{\gamma}_{u1,v1}=0.98198^{**},\;\{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6}\\{(3)\;{\gamma}_{u1,v1}=0.98700^{**},\;\{u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6}$$ 등(等)과 같이 되어, 어느 경우(境遇)에서도 고도(高度)의 정준상관(正準相關)을 가지며, (1)의 경우(境遇)에는 수고(樹高)가, (2)의 경우(境遇)에는 흉고직경(胸高直徑)이, (3)의 경우(境遇)에는 흉고직경(胸高直徑)과 수고(樹高)가 각각(各各)의 정준상관(正準相關)에 절대적인 기여(寄與)를 하는 것으로서, 각종(各種) 질적성장(質的成長)의 총합특성(總合特性)은 이들 인자(因子)의 막강한 영향력(影響力)에 의해서 형성(形成)되며, 특(特)히 (3)의 경우에서 간재적(幹材積)과의 정준상관(正準相關)에 미치는 흉고직경(胸高直徑)의 영향력(影響力)은 기타(其他)의 인자(因子)에 비(比)하여 판이(判異)하게 큰 것으로 밝혀지고 있다(표(表) 2 참조(參照)). 3) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량간(合成變量間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 $${\gamma}_{u1,v1}=0.78556^{**},\;\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076z_5+0.05285z_6$$와 같이 됨에 따라, 각종 상장성장인자(上長成長因子)와 비대성장인자간(肥大成長因子間)의 고도(高度)의 정준상관(正準相關)에 있어 수고(樹高)와 흉고직경(胸高直徑)만의 기여도(寄與度)가 극(極)히 현저한 것으로서, 상장성장(上長成長)의 총합특성(總合特性)은 수고(樹高)에 의해서, 비대성장(肥大成長)의 총합특성(總合特性)은 흉고직경(胸高直徑)에 의해서 각각(各各) 형성(形成)된다는 사실(事實)이 확인(確認)된 것이다. 따라서 양인자(兩因子)에 대한 간재적계측(幹材積計測)에 있어서의 필수유력인(必須有力因子)로서의 과학성(科學性)이 입증(立證)된 것이라 생각한다(표(表) 2 참조(參照)). 4) 수간(樹幹)의 8개성장인자(個成長因子) 즉(卽), 8차원(次元)의 정보(情報)(특성치(特性値))를 설정(設定)된 유효목표(有效目標) 85%에 따라 3차원(次元)으로 간략화(簡約化)된 총합특성치(總合特性値) 즉(卽), 제(第) 1 ~ 제(第) 3 주성분(主成分)은 다음과 같다. 제(第) 1 주성분(主成分)($Z_1$); $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$ 제(第) 2 주성분(主成分)($Z_2$) ; $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$ 제(第) 3 주성분(主成分)($Z_3$) ; $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$ 제(第) 1 주성분(主成分)($Z_1$)은 기여율(寄與率)이 63.26%나 되는 매우 높은 정보흡수력(情報吸收力)을 가진 "크기의 인자(因子)(size factor)"로서, 그의 주성분득점(主成分得點)(principal component score)은 인자부하량(因子負荷量)이 매우 높은 간재적(幹材積), 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수고(樹高) 등(等)에 의해써 결정(決定)되며, 제(第) 2 주성분(主成分)($Z_2$)은 입체적(立體的) 형상(形狀)의 지표(指標) 즉(卽), 수간(樹幹)의 입체적(立體的) 상사성(相似性)과 완구도(完溝度)를 나타내주는 "형상(形狀)의 인자(因子)(shape factor)"로서, 그의 score는 정형수(正形數)의 절대적(絶對的)인 영향력(影響力)에 의(依)해서 형성(形成)되며, 제(第) 3 주성분(主成分)($Z_3$)은 상장성장(上長成長)과 비대성장(肥大成長)과의 역관계(逆關係)의 현상(現象) 즉(卽), 수간(樹幹)의 세장(細長)(또는 굵고 짧음)의 정도를 표시(表示)하는 성장형상(成長形狀)의 지표(指標)로서, 이는 제(第) 2의 "형상(形狀)의 인자(因子)"가 된다. 이상(以上) 3개주성분(個主成分)은 그의 누적기여율(累積寄與率)이 88.36%로서 만족스러운 정보흡수역량(情報吸收力量)을 지니고 있다(표(表) 3 참조(參照)). 5) 본(本) 연구(硏究)에 적용(適用)된 주성분(主成分) 및 정준(正準) 상관분석법(相關分析法)은 적극적(積極的)인 이용개발(利用開發)에 따라서는 삼림계측(森林計測)(임목성장(林木成長)), 지위판정분류(地位判定分類), 삼림(森林) 및 임산업(林産業)의 경영진단(經營診斷), 임산가공(林産加工)(품(品))의 생산관리(生産管理) 및 기지(其地) 총합특성치(總合特性値)의 산정(算定)을 필요(必要)로 하는 분야(分野)에 많은 기여(寄與)가 있을 것으로 사료(思料)된다.

  • PDF

딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구 (Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning)

  • 현석환;이준성;전성환;김예진;김광염;윤태섭
    • 터널과지하공간
    • /
    • 제29권3호
    • /
    • pp.184-196
    • /
    • 2019
  • 본 연구에서는 화강암 시편에서 수압 파쇄법에 의해 생성된 미세균열의 3차원 형상을 X-ray CT 영상과 딥러닝을 이용하여 추출하였다. 실험으로 생성된 미세균열은 X-ray CT 영상 상에서 일반적인 영상처리방법으로는 추출하기 매우 어렵고 육안으로만 관찰이 가능한 형태를 지닌다. 하지만 본 연구에서 제안한 합성곱 신경망(Convolutional neural network) 기반 인코더-디코더(Encoder-Decoder) 구조의 딥러닝 모델을 통해 미세균열을 정량적으로 추출할 수 있었다. 특히 픽셀 단위의 미세균열 추출을 위해 인코딩 과정에서 소실되는 정보를 디코딩 과정으로 직접 전달하는 디코더 모델을 제안하였다. 또한, 딥러닝 기반 신경망 학습에 필요한 데이터의 수를 증가시키기 위해 이미지의 분할(Division), 회전(Rotation), 그리고 반전(Flipping) 등으로 데이터를 생성하는 영상 증대 방법을 적용하였으며 이때 최적의 조합을 확인하였다. 최적의 영상 학습 데이터 증대 방법을 적용하였을 때 검증 데이터뿐만 아니라 테스트 데이터에서의 성능 향상을 확인하였다. 학습 데이터의 원본 개수가 딥러닝 기반 신경망의 균열 추출 성능에 미치는 영향을 확인하고 딥러닝 기술을 사용하여 성공적으로 미세균열을 추출하였다.