• 제목/요약/키워드: 3차원 터빈익형

검색결과 10건 처리시간 0.023초

3차원 축류형 터빈익형의 공력설계에 관한 연구 (A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade)

  • 장범익;김동식;조수용
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

효율적인 2단계 최적화를 통한 3차원 해상풍력터빈 블레이드 설계 (Three-Dimensional Offshore Wind Turbine Blade Design by using Efficient Two Step Optimization)

  • 이기학;홍상원;정지훈;김규홍;이동호;이경태
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.63-71
    • /
    • 2007
  • 본 연구의 목적은 3차원 풍력터빈 블레이드 최적형상설계를 위한 실용적이고 효율적인 설계과정을 구현하는 것이다. 국내 연안의 해상풍력에 적용하기 위해서 통계적 모델을 이용하여 풍황자료를 분석하였다. 설계에 관련된 많은 수의 설계변수를 효과적으로 관리하기 위해서 설계과정은 운용조건 최적화와 블레이드 형상설계의 2단계로 구성하였다. 실험계획법에 의해 추출된 각 운용조건 설계점은 형상설계를 위한 입력 값으로 제공된다. 형상설계 단계에서는 최소에너지손실 조건과 결합된 BEMT를 이용하여 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 블레이드 단면 익형은 NREL S830을 이용하였고, 익형의 공력성능은 XFOIL을 이용하여 예측하였다. 설계된 블레이드 형상의 성능해석을 수행하고 그 결과를 바탕으로 반응면을 구성하였다. 좀 더 나은 성능을 가진 블레이드 형상을 찾기 위해서 초기설계공간에서 확률적 방법을 이용하여 타당성 있는 설계공간까지 운용조건 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 연간에너지생산량을 최대로 하는 최적블레이드 형상을 구현하였다. 제시된 최적설계과정은 풍력터빈블레이드 개발에 실용적이고 신뢰성 있는 설계툴로서 사용이 가능하다.

  • PDF

효율적인 2단계 최적화를 통한 3차원 해상풍력터빈 블레이드 설계 (Three-Dimensional Offshore Wind Turbine Blade Design by using Efficient Two Step Optimization)

  • 이기학;홍상원;정지훈;김규홍;이동호;이경태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.432-436
    • /
    • 2007
  • 본 연구의 목적은 3차원 풍력터빈 블레이드 최적형상설계를 위한 실용적이고 효율적인 설계 과정을 구현하는 것이다. 국내 연안의 해상풍력에 적용하기 위해서 통계적 모델을 이용하여 풍황 자료를 분석하였다. 설계에 관련된 많은 수의 설계변수를 효과적으로 관리하기 위해서 설계과정은 운용조건 최적화와 블레이드 형상설계의 2단계로 구성하였다. 실험계획법에 의해 추출된 각 운용조건점은 형상설계를 위한 입력값으로 제공된다. 형상설계 단계에서는 최소에너지손실 조건과 결합된 BEMT를 이용하여 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 블레이드 단면 익형은 NREL S830을 이용하였고, 익형의 공력성능은 XFOIL을 이용하여 예측하였다. 설계된 블레이드 형상의 성능해석을 수행하고 그 결과를 바탕으로 반응면을 구성하였다. 좀 더 나은 성능을 가진 블레이드 형상을 찾기 위해서 초기설계공간에서 확률적 방법을 이용하여 타당성 있는 설계공간까지 운용조건 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 연평균발생에너지를 최대로 하는 최적블레이드 형상을 구현하였다. 제시된 최적설계과정은 풍력터빈블레이드 개발에 실용적이고 신뢰성 있는 설계툴로서 사용이 가능하다.

  • PDF

축류형 3차원 터빈익형의 성능시험장치 개발 (Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade)

  • 장범익;김동식;조수용;김수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

터보펌프 부분흡입형 터빈 공력설계

  • 이은석;김진한
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.35-44
    • /
    • 2004
  • 본 연구에서는 액체로켓에 쓰이는 터보펌프 부분흡입현 터빈의 1차원 공력계산 및 구조설계에 대해 고찰하였다. 터빈은 노즐, 로터, 후방유도익등으로 나누어 각각에 대해 공력 특성을 계산식으로부터 유도하였고 CFD 계산을 통해 그 타당성을 입증하였다. 속도삼각형과 같은 1차원 설계 변수들은 평균선 방정식을 이용하여 수행되었고 2-D, 3-D CFD 계산을 통해 보정되었다. 블레이드 익형은 CFD 최적화기법을 통해 결정되었다. 향후, 열응력계산, 구조응력계산을 통한 열적/구조적 거동에 대해 연구가 필요하다.

  • PDF

3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구 (An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine)

  • 김동식;조수용
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

단단 3차원 축류형 터빈 성능시험에 관한연구 (A Study of One-Stage 3-Dimensional Axial Turbine Performance Test)

  • 김동식;조수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제16회 학술발표회 논문초록집
    • /
    • pp.59-62
    • /
    • 2001
  • 본 연구에서 터빈 설계기술이 개발되었다. 설계를 위하며 우선적으로 기본형상에 대한 설계가 이루어졌으며 유선곡률법에 의하여 터빈 내부유로에서의 공기 물성치를 계산하였다. 계산된 여러 유로에서의 유동각들을 고려하여 익형의 형상을 설계하기 위한 설계변수들이 설정되었다. 설정된 형상변수로부터 정익은 C4 형상을 사용하여 설계되었으며 동익은 설계변수에 의하여 설계되었다. 여러 입력과 RPM에 따라서 출력이 얻어졌으며 실험의 결과는 입사각이 줄어드는 것에 비례하여 출력이 감소하는 현상은 보여주었다

  • PDF

입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구 (A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle)

  • 조수용;박찬우
    • 한국추진공학회지
    • /
    • 제5권2호
    • /
    • pp.24-31
    • /
    • 2001
  • 본 연구에서 축류형 터빈의 설계기술이 개발되었다. 설계를 위하여 우선적으로 기본형상에 대한 설계가 이루어졌으며 유선곡률법에 의하여 터빈 내부유로에서의 공기 물성치를 계산하였다. 계산된 여러 유로에서의 유동각들을 고려하여 익형의 형상을 설계하기 위한 설계변수들이 설정되었다. 설정된 형상변수로부터 정익은 C4 형상을 사용하여 설계되었으며 동익은 설계변수에 의하여 설계되었다. 정익은 일체형으로 제작되었으며 동익은 입사각의 변경에 따른 실험을 수행하기 위하여 분리형으로 제작하였다. 터빈입구에서의 공기력과 RPM에 따라서 터빈에서의 출력이 얻어졌으며 실험의 결과는 제작된 터빈이 반동터빈임에도 불구하고 입사각이 줄어드는 것에 비례하여 출력이 감소하는 현상을 보여주었으며 설계값에서 입사각이 7.5도 감소함에 따라 5%의 효율 감소가 발생되었다.

  • PDF

정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구 (A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor)

  • 김동식;조수용
    • 한국항공우주학회지
    • /
    • 제30권4호
    • /
    • pp.99-105
    • /
    • 2002
  • 본 연구에서는 정익과 동익간의 축방향 간격을 달리하여 축류형 터빈에서의 성능시험을 수행하였다. 실험에 사용된 터빈은 저압저속터빈으로써 평균반경에서 반동도가 0.373이며 축류형 3차원 단단터빈이다. 터빈의 평균반경 직경은 257.56mm이며 평균반경에서 동익의 익현은 28.2mm이다. 성능시험을 위한 공기력 입력장치로는 풍동이 사용되었으며 풍동의 터보블로워 동력은 30kW로써 290mmAq의 정압력에서 $340m^3$/min의 공기량을 보낼 수 있다. 터빈에서의 회전수 및 출력은 터빈 축에 직결식으로 연결된 다이나모메터에서 제어되었다. 실험에서 축방향 간격조정은 평균반경에서의 정익 축방향 익현의 1/4에서 3배까지 변경하여 총 9개의 성능시험을 수행하였다. 같은 무차원 유량과 RPM에서 축방향의 간격에 따른 효율의 변화는 최대 8%이내지만 최고효율을 얻게되는 축방향 간격은 1.6-1.9Cx 였다.

크리프 해석을 통한 터빈 블레이드의 수명 예측 (Life Prediction Analysis of Power Generation Turbine Blades Through Creep Analysis)

  • 박정선;이수용;김종운;이안성
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.103-111
    • /
    • 2002
  • 열하중과 원심력을 고려한 발전용 터빈 블레이드의 정상 상태 크리프 해석을 수행하였다. 3차원 터빈 블레이드 유한 요소 모델에 대하여 크리프 변형률과 응력을 계산하고 수치적 방법에 의해 크리프 수명을 예측하였다. 약 200시간 정도의 크리프 해석 결과 GTD111 터빈 블레이드는 아직 파손 응력에 도달하지 않았으며, 크리프 응력은 시간이 경과함에 따라 점차 이완되고 있다. 터빈 블레이드의 최대 크리프 변형률은 익형의 압력면 끝단에서 발생하며 수치적 방법에 의해 약 50,000 시간 이후에 파손 변형률에 도달할 것이다. 따라서 현재 터빈의 기동 중 블레이드는 크리프에 의한 손상을 입지 않는다.