• Title/Summary/Keyword: 3차원 터널 막장

Search Result 69, Processing Time 0.021 seconds

Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone (단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석)

  • Han, Kong-Chang;Ryu, Dong-Woo;Kim, Sun-Ki;Bae, Ki-Chung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.58-68
    • /
    • 2008
  • The construction of an emergency spillway of Imha Dam is being in progress on the granite region including fault fractured zone. Considering that this tunnel is being excavated in three paralled rows, the pillar width between each tunnel and the face distance between each tunnel face were evaluated. The Influence of the fault fractured zone for the tunnel stability was investigated by numerical modelling in 3D. Various geophysical investigations and rock engineering field tests were carried out for these purposes. It was suitable that the second tunnel would be excavated in advance, maintaining the face distance between each tunnel face of minimum 25 m. The results of numerical modelling showed that the roof displacement and the convergence of the second tunnel were insignificant, and the maximum bending compressive stress, the maximum shear stress of shotcrete and the maximum axial force of rockbolt were also insignificant. Therefore, it was estimated that the stability of the spillway tunnel was ensured.

Numerical Analysis for Shotcrete Lining at SCL Tunnel in NS2 Transmission Cable Tunnel Project in Singapore (싱가포르 케이블터널 프로젝트 NS2현장 SCL 터널에서의 숏크리트 라이닝의 변형거동 특성)

  • Kwang, Han Fook;Kim, Young Geun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2017
  • This technical paper is a study on the unique displacements of Shotcrete Lining at the mined tunnel during excavation period through deep consideration with real time data from monitoring instrumentations correlation with the numerical analysis to identify the rock stresses and the rock spring points at the working face of the Conventional tunnelling by the Drill and Blast, based on the geological face mapping results of the project NS2, Transmission cable tunnel project in Singapore. The created geometry of numerical model was prepared to the real mined tunnel construction site including, vertical shaft, construction adit, tunnel junction area, and 2 enlargement caverns. The convergence measurements by the monitoring instrumentation were performed during the tunnel excavation and shaft sinking construction stages to guarantee the safety of complicated underground structures.

Application of the Evaluation System of Rock Mass in a Mountain Tunnel Constructed by NATM (NATM 시공 산악터널에서의 암반평가시스템 적용 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.297-307
    • /
    • 1995
  • 터널은 긴 선상구조물로서 사정조사결과와 다른 지질조건이 나타날 수 있으므로, 안전하고 합리적인 터널공사를 위해서는 시공중 지질조건에 적합한 지보설계를 실시하는 것이 필수적이다. 이를 위해서는 시공중 터널주변자반에 대한 정량적이고 공학적인 평가가 매우 중요하다. 그러나 시공중 암반을 평가하는 것은 매우 어렵고 조사자의 경험과 지식의 차이에 의해 평가정도가 크게 달라져 그 불합리성이 심화되고 있는 실정으로 터널주변암반에 대한 합리적인 평가방법이 절실히 요구되고 있다. 본 연구에서는 터널화상처리, GeoCAD, 역해석으로 구성된 평기시스템을 개발하였다. 본 시스템은 터널막장에서의 조사.시험 및 화상처리기법을 통하여 암반분류.평가를 실시하고, 터널주변 지반구조 및 굴착/지보과정의 3차원 모델링을 통하여 전방지질을 예측가능하게 하며, 터널계측자료의 역해석을 통하여 터널주변 지반의 물성을 정량적으로 평가할 수 있는 체계적이고 종합적인 평가시스템이다. 또한 이를 NATM 공법으로 시공되는 터널현장에 적용하므로써 본 시스템의 현장적용성을 검증하였으며, 이를 통해 적절한 지보공을 시공하여 터널의 안정성을 확보하고 합리적인 시공관리를 달성할 수 있었다.

  • PDF

Investigation on Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 통한 터널굴착과 지하수의 상호작용 고찰)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.33-46
    • /
    • 2004
  • This paper presents the effect of groundwater on tunnel excavation. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled finite-element analysis. Based on the results the interaction mechanism between the tunnelling and groundwater is identified for cases having different lining permeabilities. Examined items include pore pressures around lining and lining stresses. Face deformation behavior as well as ground surface movement patterns was also examined. Besides, the effect of grouting pattern was investigated. The results indicated that the effect of groundwater on tunnel excavation increases lining stresses as well as ground movements, and that the tunnel excavation and groundwater interaction can only be captured through a fully coupled analysis. Implementations of the findings from this study are discussed in great detail.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Prediction of fault zone ahead of tunnel face using x-Rs control chart analysis for crown settlement (천단변위의 x-Rs 관리도 분석을 이용한 터널 막장 전방 단층대 예측)

  • Yun, Hyun-Seok;Seo, Yong-Seok;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.361-372
    • /
    • 2014
  • A measurement of tunnel displacement plays an important role for stability analysis and prediction of possible fault zone ahead of tunnel face. In this study, we evaluated characteristics of tunnel behaviour due to the existence and orientation of fault zone based on 3-dimensional finite element numerical analysis. The crown settlement representing tunnel behaviour is acquired at 5 m away from tunnel face in combination with x-Rs control chart analysis based on statistics for trend line and L/C (longitudinal/crown displacement) ratio in order to propose risk management method for fault zone. As a result, x-Rs control chart analysis can enable to predict fault zone in terms of existence and orientation in tunnelling.

A study on key factors of ground surface settlement due to shield TBM excavation using 3-dimension numerical analysis (3차원 수치해석을 이용한 Shield TBM 굴진시 지표침하 주요 영향요소 분석)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.305-317
    • /
    • 2015
  • This paper is to perform 3-dimensional numerical analysis considering face pressure, backfill pressure, excavation length, soil model and element size for selecting key factors of ground surface settlement due to shield TBM advancement. According to the numerical analysis results, backfill pressure and soil model are governing factors inducing ground surface settlement. To complement this study, the ground conditions and characteristics of the boring machine will be considered using numerical analysis.

Assessment of Tunnel Displacement with Weak Zone Orientation using 3-D Numerical Analysis (3차원 수치해석을 이용한 연약대 방향에 따른 터널 거동 특성 평가)

  • Yim, Sung-Bin;Jeong, Hae-Geun;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • A 3-D numerical analysis was carried out to observe potential effects of orientation of inherent weak zones to tunnel behaviors and stress distributions during tunnel excavation. Weak zones used for the analysis were placed at the upper 1D part from crown, on the crown and on the center of face, using orientations derived from the 6th RMR parameter for assessment of joint orientation effect on tunnel. Mechanical properties of rock mass were derived through a in-situ displacement measurement-based back analysis. Finally, a classification chart for crown settlement with five ranks based on orientation and location of weak zones is suggested.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

Influence of Adjacent Structures using Numerical Method during funnel Blasting (터널발파굴착시 수치해석에 의한 구조물의 영향평가)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.274-278
    • /
    • 2003
  • The numerical analysis indicated that the vibration response reduced sharply at the three times of tunnel diameter. Visual display of vibration response was possible through 3-D FEM computer program, and displacement of structure, particle velocity were obtained as output. It was found that the vibration velocity was maximum at distance one to two times of tunnel diameter for the given simplified blast loadings. The results of numerical analysis were compared with empirical based predictive equation of blasting. The empirical equation showed a good agreement with 3-D FEM results at a certain range of tunnel depth in this particular type of ground conditions.

  • PDF