• Title/Summary/Keyword: 3차원 측정

Search Result 2,823, Processing Time 0.026 seconds

The Correction Effect of Motion Artifacts in PET/CT Image using System (PET/CT 검사 시 움직임 보정 기법의 유용성 평가)

  • Yeong-Hak Jo;Se-Jong Yoo;Seok-Hwan Bae;Jong-Ryul Seon;Seong-Ho Kim;Won-Jeong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • In this study, an AI-based algorithm was developed to prevent image quality deterioration and reading errors due to patient movement in PET/CT examinations that use radioisotopes in medical institutions to test cancer and other diseases. Using the Mothion Free software developed using, we checked the degree of correction of movement due to breathing, evaluated its usefulness, and conducted a study for clinical application. The experimental method was to use an RPM Phantom to inject the radioisotope 18F-FDG into a vacuum vial and a sphere of a NEMA IEC body Phantom of different sizes, and to produce images by directing the movement of the radioisotope into a moving lesion during respiration. The vacuum vial had different degrees of movement at different positions, and the spheres of the NEMA IEC body Phantom of different sizes produced different sizes of lesions. Through the acquired images, the lesion volume, maximum SUV, and average SUV were each measured to quantitatively evaluate the degree of motion correction by Motion Free. The average SUV of vacuum vial A, with a large degree of movement, was reduced by 23.36 %, and the error rate of vacuum vial B, with a small degree of movement, was reduced by 29.3 %. The average SUV error rate at the sphere 37mm and 22mm of the NEMA IEC body Phantom was reduced by 29.3 % and 26.51 %, respectively. The average error rate of the four measurements from which the error rate was calculated decreased by 30.03 %, indicating a more accurate average SUV value. In this study, only two-dimensional movements could be produced, so in order to obtain more accurate data, a Phantom that can embody the actual breathing movement of the human body was used, and if the diversity of the range of movement was configured, a more accurate evaluation of usability could be made.

Binocular Vision Corrective Spectacle Lenses Reduce Visual Fatigue in 3-D Television Viewing (양안시 교정안경의 3차원 텔레비전 시청 중 발생한 안정피로 감소)

  • Yoon, Jeong Ho;Kim, Jae-Do
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.363-369
    • /
    • 2014
  • Purpose: Three-dimensional (3D) displays are very useful in many fields, but induce physical discomforts in some people. This study is to assess symptom type and severity of asthenopia with their habitual distance corrective spectacle (HDCS) and their binocular vision corrective spectacle lenses (BVCSL) in people who feel physical discomforts. Methods: 35 adult subjects (ages $32.2{\pm}4.4$ yrs) were pre-screened out of 98 individuals to have the highest symptom/asthenopia scores following 65 minutes of 3D television viewing with HDCS. These 35 individuals were then retested symptom/asthenopia scores during they watched 3D television for 65 minutes at a distance of 2.7 m with wearing BVCSL of horizontal, vertical or base down yoked prisms. A 4-point symptom-rating scale questionnaire (0=no symptom and 3=severe) was used to assess 11 symptoms (e.g., blur, diplopia, etc.) related to visual fatigue/visual discomfort. Distance and near lateral phoria were measured using Howell phoria card and vertical phoria were measured using Maddox rod. Symptoms induced by watching 3D TV were compared between wearing HDCS and BVCSL. Results: Asthenopia in watching 3D TV with wearing BVCS was significantly lower than wearing HDCS at 5, 25, 45, and 65 minutes (all p < 0.001, paired t-tests). In only refractive error power correction power group, all asthenopia was not significantly different between HDCS and BVCSL (all $p{\geq}0.05$, paired t-tests). In prism correction groups for binocular imbalance, symptoms of asthenopia, however, was significantly lower for when wearing BVCSL than when wearing HDCS (all p < 0.05). Conclusions: Correction of phoria/vergence-based binocular vision imbalance can reduce asthenopia during 3D television viewing. An individual with binocular vision imbalance need corrected/compensated glasses with appropriate prisms prior to prolonged viewing of 3D television displays to reduce asthenopia/visual fatigue.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

Optimization of Image Tracking Algorithm Used in 4D Radiation Therapy (4차원 방사선 치료시 영상 추적기술의 최적화)

  • Park, Jong-In;Shin, Eun-Hyuk;Han, Young-Yih;Park, Hee-Chul;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • In order to develop a Patient respiratory management system includinga biofeedback function for4-dimentional radiation therapy, this study investigated anoptimal tracking algorithmfor moving target using IR (Infra-red) camera as well as commercial camera. A tracking system was developed by LabVIEW 2010. Motion phantom images were acquired using a camera (IR or commercial). After image process were conducted to convert acquired image to binary image by applying a threshold values, several edge enhance methods such as Sobel, Prewitt, Differentiation, Sigma, Gradient, Roberts, were applied. The targetpattern was defined in the images, and acquired image from a moving targetwas tracked by matching pre-defined tracking pattern. During the matching of imagee, thecoordinateof tracking point was recorded. In order to assess the performance of tracking algorithm, the value of score which represents theaccuracy of pattern matching was defined. To compare the algorithm objectively, we repeat experiments 3 times for 5 minuts for each algorithm. Average valueand standard deviations (SD) of score were automatically calculatedsaved as ASCII format. Score of threshold only was 706, and standard deviation was 84. The value of average and SD for other algorithms which combined edge detection method and thresholdwere 794, 64 in Sobel, 770, 101 in Differentiation, 754, 85 in Gradient, 763, 75 in Prewitt, 777, 93 in Roberts, and 822, 62 in Sigma, respectively. According to score analysis, the most efficient tracking algorithm is the Sigma method. Therefore, 4-dimentional radiation threapy is expected tobemore efficient if threshold and Sigma edge detection method are used together in target tracking.

The analysis of physical features and affective words on facial types of Korean females in twenties (얼굴의 물리적 특징 분석 및 얼굴 관련 감성 어휘 분석 - 20대 한국인 여성 얼굴을 대상으로 -)

  • 박수진;한재현;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • This study was performed to analyze the physical attributes of the faces and affective words on the fares. For analyzing physical attributes inside of a face, 36 facial features were selected and almost of them were the lengths or distance values. For analyzing facial contour 14 points were selected and the lengths from nose-end to them were measured. The values of these features except ratio values normalized by facial vortical length or facial horizontal length because the face size of each person is different. The principal component analysis (PCA) was performed and four major factors were extracted: 'facial contour' component, 'vortical length of eye' component, 'facial width' component, 'eyebrow region' component. We supposed the five-dimensional imaginary space of faces using factor scores of PCA, and selected representative faces evenly in this space. On the other hand, the affective words on faces were collected from magazines and through surveys. The factor analysis and multidimensional scaling method were performed and two orthogonal dimensions for the affections on faces were suggested: babyish-mature and sharp-soft.

  • PDF

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Host-Based Intrusion Detection Model Using Few-Shot Learning (Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델)

  • Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.271-278
    • /
    • 2021
  • As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.

Contrast-Enhanced Magnetic Resonance Angiography for Evaluation of the Steno-occlusive Disease of the Supraaortic Arteries: Comparison with Computed Tomography Angiography and Digital Subtraction Angiography (조영증강 자기공명 혈관조영술을 이용한 대동맥궁 위 혈관의 협착 및 페쇄 질환 평가: 전산화 단층 혈관조영술 및 디지털 감산혈관조영술과의 비교)

  • Jeh, Su-Kyung;Kim, Bum-Soo;Jung, So-Lyung;Ahn, Kook-Jin;Shin, Yong-Sam;Lee, Kwan-Sung;Kim, Young-In;Lee, Kwang-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.152-160
    • /
    • 2009
  • Purpose : To intra-individually compare diagnostic accuracy of high-resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with computed tomography angiography (CTA) and digital subtraction angiography (DSA) for the assessment of supraaortic steno-occlusive disease. Materials and Methods : Twenty-eight patients (20 men, 8 women, 53-79 years of age) underwent supraaortic CE-MRA, CTA and DSA. CE-MRA was performed on two 1.5T MR scanners (voxel dimension: $0.66{\times}0.66{\times}1.1$ or $1.2\;mm^3$), and CTA on 64-slice CT scanners (voxel dimension: $0.42{\times}0.42{\times}0.63\;mm^3$). All the three examinations were completed within 40 days (median 19 days; range 1-40 days). Retrospective evaluation and measurement of diameter of 6 extracranial and 9 intracranial arterial segments was done by 2 experienced radiologists. Results: A total of 420 arterial segments were examined by CE-MRA, CTA and DSA. On DSA, 34 stenoocclusive lesions were noted at extracranial (n= 19) and intracranial (n = 15) vessels. For extracranial stenosis greater than 70%, sensitivity, specificity, positive predictive value (PPV) and negative predictive values (NPV) were 94.7%, 98.7%, 90.0% and 99.3% on CE-MRA, and 94.7%, 99.3%, 94.7% and 99.3% on CTA. For intracranial stenosis greater than 50%, sensitivity; specificity, PPV and NPV were 93.3%, 98.3%, 77.8%and 99.6% on CE-MRA, and 86.7%, 97.9%, 72.2% and 99.1 % on CTA, with DSA as the standard of reference. Conclusion : Supraaortic CE-MRA is as reliable as CTA in depicting the arterial stenosis, and is effective in screening of significant stenosis of both extracranial and intracranial arterial stenosis.

  • PDF

3D analysis of soft tissue around implant after flap folding suture (Flap folding suture를 활용한 판막의 고정에 따른 임플란트 주변 연조직 3차원 부피 변화 관찰)

  • Jung, Sae-Young;Kang, Dae-Young;Shin, Hyun-Seung;Park, Jung-Chul
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.130-137
    • /
    • 2021
  • Purpose: The various suture techniques can be utilized in order to maximize the keratinized tissue healing around dental implants. The aim of this study is to compare the soft tissue healing pattern between two different suture techniques after implant placement. Materials and Methods: 15 patients with 18 implants were enrolled in this study. Simple implant placement without any additional bone graft was performed. Two different suture techniques were used to tug in the mobilized flap near the healing abutment after paramarginal flap design. Digital intraoral scan was performed at baseline, post-operation, stitch out, and 3 months after operation. The scan data were aligned using multiple points such as cusp, fossa of adjacent teeth, and/or healing abutment. After subtracting scan data at baseline with other time-point results, closed space indicating volume increment of peri-implant mucosa was selected. The volume of the close space was measured in mm3. The volume between two suture techniques at three time-points was compared using nonparametric rank-based analysis. Results: Healing was uneventful in both groups. Both suture technique groups showed increased soft tissue volume immediately after surgery. The amount of volume increment significantly decreased after 3 months (P < 0.001). Flap folding suture group showed higher median of volume increment than interrupted suture group after 3 months without any statistical significance (P > 0.05). Conclusion: After paramarginal flap reflection, the raised flaps stabilized by flap folding suture showed relatively higher volume maintenance after 3-month healing period. However, further studies are warranted.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.