• Title/Summary/Keyword: 3차원 지하구조물

Search Result 85, Processing Time 0.023 seconds

BIM Based Virtual Simulations in CIP(Case in Place Pile) Method for Underground Space Excavation (3차원 정보모델을 활용한 지하공간 굴착 CIP 공법의 가상검토 -서울대학병원 지하 복합진료공간 임대형 민자사업 BIM 설계를 중심으로-)

  • Lee, Hyuk-Jin;Park, Kun-Young;Kim, Hyo-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.517-520
    • /
    • 2010
  • BIM 설계시 의무사항으로 포함되어 있는 원지형과 암층별 지층, 흙막이 공법 중 CIP(Cast in Place Pile)공법, 구조물 형상을 3차원 정보 모델로 생성하고, 모델을 통해 정확한 2D 도면의 생성, 각 공정간의 간섭검토, 암층별 토공량 및 흙막이의 수량을 산출하였다. 최종 설계안을 도출하기 위해 3차원 기법이 설계 초기에 도입되어 반복적인 노력과 시간을 최소화하여 많은 설계대안을 제시하도록 하였으며, 정확한 설계결과를 얻기 위해, 2D 설계와 3D 설계를 병행 수행함과 동시에 이 과정과 결과를 비교하여 3차원 모델의 효과를 검증하였다.

  • PDF

Design and Implementation of Mobile 3D Visualization Service System on the Integrated Underground Geospatial Information Map

  • Cho, Sook-Kyoung;Kim, Yong-Tae;Choi, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.173-186
    • /
    • 2020
  • In this paper, we design and implement a service system for mobile devices to utilize the integrated underground geospatial information map in underground exploration fields. The field utilization service system for mobile devices is designed to visualize tiled maps, 3D terrain information, underground structures, underground facilities, and ground information provided by the Integrated Underground Geospatial Information Map Management System according to current position. And It is designed to reflect the results obtained from field exploration in real time. Also, the proposed system is implemented to transfer and visualize the integrated underground geospatial information map in the form of a glTF format due to constraints on wireless networks and device characteristics of mobile devices. Implemented mobile service systems can prevent accidents in underground exploration field from occurring by providing users with accurate and integrated underground geospatial data by visualizing maps and geospatial objects in three dimensions at underground exploration fields. In addition, updated underground geospatial data is transmitted in real time to the Integrated Underground Geospatial Information Map Management Systems, which can maintain up to date and accuracy.

The Assesment of Tunnelling Induced Damage for the Opera House (Emphasis on 3D FEM Analysis) (터널 시공에 따른 오페라극장의 영향평가 (수치해석을 중심으로))

  • Hwang, Eui-Seok;Lee, Bong-Youl;Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2002
  • This research work is to investigate influences of the Opera House in Arts Center caused by the twin tunnel construction. The Opera House of 3D structural feature with various type of foundations and adjacent twin tunnels are modeled in 3-Dimensional mesh for FEM analysis. Confirmation of safety is essential for this particular type of structure, and attention level and warning level of control criteria are examined for the protection of the Opera House by means of the analytical results.

  • PDF

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

A Study on 3D Tunnel Data Model for Integrated Map of Underground Spaces (지하공간통합지도의 3차원 터널 데이터 모델에 관한 연구)

  • Lee, Ji Yeon;Ryu, Ji Hui;Jeong, Da Woon;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.371-380
    • /
    • 2021
  • This study aims to design a tunnel part model for underpass and subway lines that correspond to tunnel sector among the underground facilities(structure types) covered in the integrated map of underground spaces. For this purpose, we compared and reviewed the characteristics of international standards related to tunnel data models. As a result, it was found that CityGML 3.0 - Tunnel module was the most suitable for designing a 3D tunnel data model. Afterwards we reviewed the legal and institutional regulations to derive the standard elements of the 3D tunnel data model. Then we conducted a demand survey targeting experts in related fields to derive standard elements for addition and extension of underpasses and subway lines. Based on the above process, we designed and presented a 3D tunnel data model using UML. This study is expected to be meaningful as a basic study to improve the utilization of tunnel model in the integrated map of underground spaces.

Economic Feasibility Analysis for Introducing Integrated Management System for Supporting Underground Construction (지하구조물건설 현장지원 통합관리시스템 도입을 위한 경제적 타당성 분석)

  • Baek, Hyeon Gi;Jang, Yong Gu;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.513-522
    • /
    • 2010
  • Underground construction for traffic networks, complexes, and storage facilities has risen as an effective land use plan for dealing with emerging problems such as overcrowded urban cities and traffic jams. This paper performed an economic feasibility analysis of the development of the integrated field management system which provides field workers and managers with 3D-based location tracking and clear communication during underground construction works. To conduct the analysis, processes and problems of field management for underground construction were analyzed and deduction in accidents and field management costs and productivity improvement were estimated as expected benefits. Based on computed benefits and costs, an economic analysis was conducted using Benefit/Cost ratio(B/C), Net Present Value(NPV), and Internal Rate of Return(IRR) and then sensitivity analysis was performed to cope with the uncertainty of assumed variables.

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

A Study on the Upper Ground Reinforcement Effect in Underground Cavern (지하공동 상부지층 보강효과에 관한 연구)

  • Kim, Ki Ho;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Excavation of underground space in soft ground implicate to the structure, such as subsidence. As a result, it has been acting as a serious risk to the stability of the roads and facilities. Therefore, in order to stabilize the soil stabilization and reinforcement of the structure, we have been using a number of methods and injecting material. In this study, we compared and analyzed the amount of subsidence regarding the ground reinforcement during underground excavation in soft ground by performing model test. And three-dimensional numerical analysis was performed using FLAC 3D. The subsidence was simulated numerically according to the tunnel excavation. The subsidence results of the model tests and numerical analyzes were relatively consistent. Thus comparing the ground subsidence by varying the reinforcement area on the numerical analysis was analyzed. As a results, three-dimensional numerical simulation could be regarded to simulate better on the ground subsidence by various kinds of underground excavation and it can be used as a material of subsidence prevention methods.

Design of Standard Submission Format for Underground Structures : An Automated Update of the UnderSpace Integrated Map (지하공간통합지도 자동갱신을 위한 지하구조물 제출 표준 설계)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.469-476
    • /
    • 2021
  • The framework plan for the development of an integrated underground space map was established of preventing ground subsidence. The mapping process is expected to be completed to the level of nationwide municipal government standards by end of this year. To facilitate the utilization of the integrated underground space map, paper-based drawings for specialized organizations in underground safety impact assessment have been provided since September 2018, and services for local government officials have been provided in the underground information utilization system since May 2019. However, the map is utilized based on the information at the time of the initial development of the map, without any updates, thereby resulting in a lack of accuracy and latest information. This has led to a decrease in the utilization and reliability of the information. Therefore, in this study, for the underground structures(subway, underground shopping mall, underground passage, underground roadway, underground parking lot, utility tunnel), which are the key components of the integrated underground space map, a standard format for the submission of completed drawings is designed in accordance with Article 42 (2) of the Special Act on Underground Safety Management, which aims at laying the foundation for establishing the updated system of the integrated underground space map. In addition, through the verification of the automatically updated underground structure data based on the standard format, the reliability of the data can be assured. This format is expected to contribute to the improved utilization of the integrated underground space map in the future.

Three dimensional dynamic analysis of underground tunnels by coupling of boundary and finite elements (유한요소-경계요소 조합에 의한 터널의 3차원 동적해석)

  • 이찬우;김문겸;황학주
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.91-102
    • /
    • 1995
  • For the wave propagation problems, the influence of time-dependent dynamic behavior must be accounted in the analysis. In this study, the dynamic analysis method which combines finite elements and boundary elements is developed for the wave propagation problem modelling the infinity of medium through 3-D boundary elements and underground structure through degenerated finite shell elements. Performing dynamic analysis of underground tunnels by the proposed coupling method of boundary and finite elements, it is found that the change of the stiffness of structures has a good effect on the response. It is also found that the consideration of the repeating effect due to moving traffic loads which is difficult with existing 2-D dynamic analysis can be possible with the 3-D analysis in time domain.

  • PDF