• Title/Summary/Keyword: 3차원 전산화 단층사진

Search Result 22, Processing Time 0.03 seconds

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

Validity of midsagittal reference planes constructed in 3D CT images (전산화단층사진을 이용한 3차원 영상에서 정중시상기준평면 설정에 관한 연구)

  • Jeon, Ye-Na;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.37 no.3 s.122
    • /
    • pp.182-191
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the validity of midsagittal reference (MSR) planes constructed in maxillofacial 3D images. Methods: Maxillofacial computed tomography (CT) images were obtained in 36 normal occlusion individuals who did not have apparent facial asymmetry, and 3D images were reconstructed using a computer software. Six MSR planes (Cg-ANS-Ba, Cg-ANS-Op, Cg-PNS-Ba, Cg-PNS-OP, FH${\perp}$(Cg, Ba), FH${\perp}$(Cg, Op)) were constructed using the landmarks located in the midsagittal area of the maxillofacial structure, such as Cg, ANS, PNS, Ba and Op, and FH plane constructed with Po and Or. The six pairs of landmarks (Z, Fr, Fs, Zy, Mx, Ms), which represent right and left symmetry in the maxillofacial structure, were selected. Statistically significant differences of the right and the left measurements were examined through t-test, and the difference of the right and the left measurement was compared among the six MSR planes. Results: The distances from the right and the left landmarks in each pair to each MSR plane did not show a statistically significant difference. The reproducibility of the landmark identification was excellent. Conclusion: All the six planes constructed in this study can be used as a MSR plane in maxillofacial 3D analysis, particularly, the planes including Cg and ANS.

Reproducibility of asymmetry measurements of the mandible in three-dimensional CT imaging (전산화단층사진을 이용한 하악골 3차원 영상에서 비대칭진단 계측항목의 재현도에 관한 연구)

  • Kim, Go-Woon;Kim, Jae-Hyung;Lee, Ki-Heon;Bwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.314-327
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the reproducibility of measurements representing asymmetry of the mandible and to identify which landmarks would be more useful in 3-dimensional (3D) CT imaging. Methods: Facial CT images were obtained from forty normal occlusion individuals. Eighteen landmarks were established from the condyle, gonion, and menton areas, and 25 measurements were constructed to represent asymmetry of the mandible; 8 for ramus length, 12 for mandibular body length, 1 for condylar neck length, 2 for frontal ramal inclination, and 2 for lateral ramal inclination. Inter- and intra-examiner reproducibility of the measurements was evaluated. Results: Inter-examiner reproducibility of the measurements proved to be high except for 3 measurements. Intra-examiner reproducibility also proved to be high except for 2 measurements. Inter- and intra-examiner reproducibility of the measurements including Gonion proved to be low. Conclusions: The results of the present study indicate that the landmarks and measurements constructed in 3D CT images can be used for the diagnosis of facial asymmetry.

Comparison of midsagittal reference plane in PA cephalogram and 3D CT (3차원 전산화 단층촬영의 Nasion, Sella, Basion으로 구성된 정중 시상 평면과 정면 두부방사선 규격사진의 정중 시상 평면 비교)

  • Cho, Jin-Hyoung;Moon, Ji-Yeon
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.6-15
    • /
    • 2010
  • Objective: The aim of this study is to find the most helpful midsagittal reference plane for diagnosis in PA cephalometry compared with 3D CT. Methods: The subjects consisted of 25 adults who showed no facial asymmetry by gross inspection. 3D CT and posteroanterior cephalogram of the subjects were taken. To find the most helpful midsagittal reference plane in PA cephalometry, we considered five kinds of midsagittal planes from which the distances to five landmarks were measured and compared the result with that of 3D CT. The midsagittal plane for 3D CT was determined by the landmarks Nasion, Sella and Basion. Results: PA measurements using the midsagittal reference plane on a perpendicular plane lying through the midpoint of the right and left latero-orbitales was closest to those of 3D CT. Conclusions: It was considered that latero-orbitale perpendicular could be used as the helpful midsagittal reference plane to assess facial asymmetry in PA cephalometry.

Recent Developments in Imaging Systems and Processings-3 Dimensional Computerized Tomography (영상 System의 처리의 근황-전산화 3차원 단층 영상처리)

  • 조장희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.8-22
    • /
    • 1978
  • Recently developed Computed Topography (CT) reconstruction algorithms are reviewed in a more generalized sense and a few reconstruction examples are given for illustration. The construction of an image function from the physically measured projections of some object is Discussed with reference to the least squares optimum filters, originally derived to enhance the signal-to-noise ratio in communications theory. The computerifed image processing associated with topography is generalized so as to include 3 distinct parts: the construction of an image from the projection, the restoration of a blurred, noisy image, degraded by a known space-invariant impulse response, and the further enhancement of the image, e.g. by edge sharpening. In conjunction with given versions of the popular convolution algorithm, n6t 19 be confused with filtering by a 2-diminsional convolution, we consider the conditions under which a concurrent construction, restoration, and enhancement are possible. Extensive bibliographical limits are given in the references.

  • PDF

Finite Element Analysis of Stress Distribution in using Face Mask according to Traction Point (훼이스 마스크의 견인위치에 따른 응력분포에 관한 유한요소법적 연구)

  • Oh, Kyo-chang;Cha, Kyung-Suk;Chung, Dong-hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.171-181
    • /
    • 2009
  • The objective of this study was to analyse stress distribution of maxillary complex by use of face mask. The construction of the three-dimensional FEM model was based on the computed tomography(CT) scans of 13.5 years-old male subject. The CT image were digitized and converted to the finite element model by using the mimics program, with PATRAN. An anteriorly directed force of 500g was applied at the first premolar 45 degrees downwards to the FH plane and at the first molar 20 degrees downwards to the FH plane. When 45 degrees force was applied at maxillary first premolar, there were observed expansion at molar part and constriction at premolar part. The largest displacement was 0.00011mm in the x-axis. In the y-axis, anterior displacement observed generally 0.00030mm at maximum. In the z-axis, maxillary complex was displaced 0.00036 mm forward and downward. When 20 degrees force was applied at maxilla first molar, there were observed expansion at lateral nasal wall and constriction at molar part. The largest displacement was 0.001mm in the X-axis. In the Y-axis, anterior displacement observed generally 0.004mm at maximum. In the Z-axis, ANS was displaced upward and pterygoid complex was displaced downward. The largest displacement was 0.002mm.

Consideration of maxillary sinus bone thickness when installing miniscrews (미니스크류 식립 시 상악동의 골두께에 대한 고려)

  • Kim, Do-Hyun;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.354-361
    • /
    • 2009
  • Objective: Miniscrews are widely used in orthodontic treatment for the purpose of anchorage control. Maximum anchorage can be acquired by the use of miniscrews. Maxillary miniscrew has many clinical advantage for orthodontic treatment. Maxillary sinus, tooth root can be an obstacle for maxillary miniscrew installation. The purpose of this study was to find the safest area and direction of miniscrew insertion in consideration of the maxillary sinus. Methods: The maxillary sinus area of 40 patients (20 male, 20 female) was measured using 3D computed tomography and 3D reconstruction program. Results: The maxillary sinus floor was located most inferiorly between the 1st molar and 2nd molar and located most superiorly between the 1st premolar and 2nd premolar. Buccal bone thickness from the maxillary sinus is significantly thicker between the 1st molar and 2nd molar and significantly thinner between the 1st premolar and 2nd premolar. The area between the 1st premolar and 2nd premolar has a significantly longer vertical distance from CEJ to sinus in consideration of buccal bone thickness. Conclusions: Considering maxillary bone thickness, the posterior area has advantages over the anterior area for installing miniscrews safely and preventing perforation.

THREE-DIMENSIONAL EVALUATION OF IMPACTED MAXILLARY CANINES USING CONE BEAM COMPUTED TOMOGRAPHY AND PANORAMIC RADIOGRAPHS (Cone beam CT와 파노라마방사선사진을 이용한 매복 상악 견치의 3차원적 분석)

  • Jeon, Sang-Yun;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.2
    • /
    • pp.106-117
    • /
    • 2013
  • Normal eruption of the canine is important for the transition to the permanent dentition. Etiologies, including premature loss or delayed retention of deciduous teeth, neoplasm and abnormality of lateral incisor can cause impaction of the maxillary canine. Untreated canine impaction can result in malocclusion, cyst formation and obstacles in orthodontic treatment. The aim of this study is to evaluate location of the impacted maxillary canine and to identify correlation between location and management of the impaction including complications. Using panoramic radiographs and CBCT scan, images of 89 children diagnosed with impaction of the maxillary canine, location of impacted canines was evaluated. The choice of treatment and complications were investigated to identify correlation. Results show that the most commonly impacted location of the maxillary canine was in the mid-alveolar area, followed by buccal side and palatal side. Orthodontic traction was selected more frequently than the other treatments. As complications, displacement of adjacent tooth was occurred most frequently. Buccally impacted canines showed increased tendency towards displacement. The more buccally the canine was impacted, the less orthodontic traction was chosen as the treatment. The canine impacted mesially to the central incisor showed increased tendency to occur root resorption. Therefore, early diagnosis by periodic examination, appropriate treatment and intervention is required.