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Abstract

Recently developed Computed Tomography (CT) reconstruction algorithms are reviewed in a
more generalized sense and a few reconstruction examples are given for illustration. The constr-
uction of an image function from the physically measured projections of some object is
discussed with reference to the least squares optimum filters, originally derived to enhance the
signal-to-noise ratio in communications theory. The computerized image processing associated with
tomography is generalized so as to include 3 distinct parts; the construction of an image from
the projection, the restoration of a blurred, noisy image, degraded by a known space-invariant
impulse response, and the further enhancement of the image, e.g. by edge sharpening. In
conjunction with given versions of the popular convolution algorithm, not to be confused with
filtering by a 2-diminsicnal convcluticn, we consider the conditions under which a concurrent
construction, restoration, and enhancement are possible. Extensive hibliographical lists are given
in the references.
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the community of physical scientists and medical

1. Introduction practiticners [1,2], In a sense, practical tomogra-

Computerized Tomography (CT), or more
specifically, Computerized Transverse Axial Tom-
ography (CTAT), is now widely known within

phy, whose fruition is generally credited to G.N.
Hounsfield ¢f EMI Ltd., Great Britain, is a rema-

rkable achievement. It has developed into a

working option for physicians, and evidently,

“E@R, BENEEEE 2 GFLE mar.ly hospitals desire this type of diagnostic
(Dept. of Electrical Science, KAIS) equipment.
HEAF 197859 A 148 The processing which leads to the resultant
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image could be realized in various ways. High
speed general purpose computers have been used,
as have the slower minicomputers; it is clear, in
this day and age, that specialized processing or
microprocessing, e.g. “hardwired” FFT, convolution,
or back-projection, can be realized with great
-efficiency.

The underlying theoretical reasons as to why
this processing hardware is necessary can be
explained by a 2-dimensional Fourier analysis, as
we shall eventually do; but it should be mentioned
that the necessary process can also be discovered
by physical reasoning in the spatial domain. A
sample slice from a Transverse Axial {TA) mode
scan, for example, suggests that beams of uniform
intensity, from all angles, should be back-projected
and superimposed (see Fig. 1). But the resultan
image was found to be badly distorted by an
excessively high, slowly varying intensity near
origin or center, leading one to search for a
suitable method of compensation. By convolving
the projected values with a certain “histogram?”
before they are back-projected, the characteristic

distortion can, for all practical purposes, be

removed.
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Fig.1. The value of a projection p(z,"¢)., of
an object, is defined to be the line
integral between ¢ and b along y=—z/
tan(6) +z,’/sin(9). This line integral can
be approximated by direct measurement
in the strip of width 4z’.During a back-
projection, this strip is taken to be a
beam of uniform intensity. Also shown
are the spatial (z,y) and spatial freque-
ney {(z,v) or (o,6) variables.

By introducing a frequency domain, the necessary
compensation can be dsfinred as a “linear,” zero
phase, circularly symertric weighting s/, In
fact, the necessary function occurs naturally during
a cartesian to polar coordinate transformation of
the Fourier equations. This transformation is
convenient tecause the projection values are
collected ‘in polar geometry.

Filtering of an object function O(w,v), v and v
being the spatia! frequency, or frequency variables
along the 2 and v spatial directions, implies, in
this article, a simple weighting in frequency
domain, e.g. by a filter function H (z,v):

I(u,v) =H (u,v) 0 (x,v). (1)

The result, I{xv), a filtered version of O{y,v),
ts an approximation to the otject function: we
call it the image functicen. The filter function H
(u,v) might be considered to be a freguency
domain window whose value is zero beyond the

boundary: cor H(xv) be an

might
filter, or

window’s
optimal noise ¢r an optimal restoration

jsmply a function which somekhow enhances the

resultant spatial domain  image. The spatial

domain image, incidently, is obtained by inverse

Fourier transformartion:
ras=[ | Iuwyexplzsitr cvy) ldudv @)
D ~o0J ~00

H atie e cardiTiAns /
Latter, we will meation ‘he conditisns on I{,v)s
O@v), and H{yv) -hich  guarantee that the

. o
Fourier analysis can be appiied.

Fig.2. A digital image as it appears when dis-
plaved with 15x20 tl:cks or pixels
{courtesy L.D. Harmon and B. Julesz, Sci.,
V. 18, PpP-1194~1196, 1973).
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The imoprtance of 2-dimensional filtering can
be demonstrated ty way of TFig.2., This is a
digitized picture whose total stcrage requirements
are medest, and which could te transmitied
efficiently bty electrical means [3.. This kind of
coarse picture can te mappsd into an object space
O {(x,~), Fourier transfcrmed to Ofy,v), filtered by
an appropriate H{u,v), and transfcrmed to the
image I(x,y) as in Fig.3, Here a simple low pass
filter was used; its cutoff frequency was 0. 6/ 4%, 4%
Leing the bleck interval of the criginal coarse
picture. Unquesticnatly, the filteresd image is
enhanced in the mind of the viewer, the human
perception being enharced ty the removal of

sharp, high frequercy edges.

Fig.3, The imags which appears when Fig.2 is
processed through a 2-dimensional low
pass filter (csurtesy L.D. Harmon and
B. Julesz).

In opposition to the above instance, there are
images whose edges might be accentuated [47].
Enhancement includes smoothing, edge crispening,
ripple removal, echo selection, echo rejection and
dynamic range control. The filter function H (&%),
together with the |p| function, appears naturally
and can be realized, except for digital error, in
the processing which forms the core of 2 and 3-D

image reconstruction.

2. Two-dimensional Filtering and the

Fourier-convoiution Procedure

We now turn our attention to a version of

Fourier analysis in polar coordinates which can be

used to construct images from the projections of
an object [5]. Let O(u,v) be the Transform of
the cbject function O(z,y), i.e.

Oty = [ “owuyemcar due. @

The “+ <:” notation denotes the usual limit of
the integral as the variables of integration are
made to increase withcut bound. The limit will

exist if the following exists
Lizf r |0 (u,v) | dudv (4

i.e. if L, is bounded. In polar coordinates in the

frequency domain the following relations apply

u=p cos ¢

v=p sin 0 (5)
and

du dv=p dpd®. (6)

It may ;be noted that the p of Eq. (6) is
equivalent to the Jacobian determinant which
relates differential area in u,v, space to differential

area in p,f space, i.e.

ou o
Top 08

. R =p
ot av

dp 99 ;

The Fourier transform, Eq.(3),can be expressed

in polar coordinates as
0,3 =] aof" do 6 O(p,)etrsex. ®
] 0
By virtue of the Hermitian symmetry of the
integrand, we can write
O(I’y)zj: do]” dp 10| O (p,0)esier ©
where z’=x cosf+y sind.
As we showed in Eq. (1), the O(p,0) could have

been processed through a 2-dimensional filter H
(p,0), i.e.

1(p,6) = H(p,6) 0 (p,6), (10)
where
H{(p,6) <B, any p,6, 1

and B denctes a finite bound.

Such processing is permissible because Eq. (3),
Eq. (4), and hence Eq. (9)continue to exist when
O (p,6) is replaced by I(p,0):

Hay) = do]”_ dolol I(p0)ei (12)

The inner integral of Eq. (12), which we will
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define as f(z,’8) can be written as
@0 =["do Lol HenT 0G0 (13

Consider the 1st term in brackets in the integ-
rand; we define it as ¢ (p,6):
o(p,0) =1p| H(p,0). (14)
This function will be seen to be a central
parameter in image construction: the factor |p|
can be interpreted as the radial frequency comp-
ensation term,removing the characteristic distortion
of a simple back-projection and superposition of
the projected values, as discussed in the introduc-
tion. In connection with this discussion, the outter,
0 to = integration of Eq. (12) is analogous to the
is the
filter function which may optimize the signal

superposition operation. And then H(p,8)

relative to the noise, enhance the resultant image,
or serve as an inverse filter for the purpose of
restoration. In the simplest, unfiltered -case,
equivalent to a unit transfer of infinite bandwidth,
H{p,0) =1 at all frequencies in p,d space.

In order to proceed with the derivation of th®
Fourier convolution method, the 1—dimensionaL
Fourier transform, termed &(z'), of @(p9) is

required to exist:

2y =["_ doo(p0)erire (15)

Equivalently,
L={" dolp| [H(p,0)|<B for any 6, (i6)

where B’ denotes a finite bound. It is evident
tnat the condition Eq. (11) is insuficient, and
that H(p,8) must also cause L, to be bounded.
This tougher condition implies, for instance, that
H(p,6) must approach zero faster than 1/]p|? as
|o| increases without tound. Within the restriction
of Eq. (16), H(p,8)

low, band, or highpass, restoration or enhancem-

can be any filter function:

ent.

Other, more specialized properties can be
attributed to, or imposed on H(p,6); e.g. it must
be linear. It must be derived from a space-invariant
2-dimensional impulse response, or a shift-
invariant ¢(z’). Because [(z,y) must bLe real,
I(p,6) must have Hermitian symmetry at fixed

9. Hence H(p,6) must be Hermitian as well

Ordinarily, it is sufficient to allow the imaginary
part to be zero, making Hp,8) “resistive”. When
H{p,8) is resistive, £(z’) can be computed to be

a cosine transform, i.e.

£(z’) =2J-: dp p H(p,0) cos (2rpz’) an

When one desires to treat equally the waves
along differing directions, he must merely make
H{(p,8) circularly symmetric. When this has been
done, we write H(p,0) as H(p).

H (p,8)is indispensitle to the Fourier-convolution
procedure because it serves to limit the otherwise
unbounded !p|. This makes possitle the numerical
computation of ¢(z’); but perhaps more importén-
tly, H(p,8) prevents |p| from amplifying the high
frequency noise in that domain where the
spectral components of the image are insignificant.
The optimum shape of H{p,¢#) is ncw considered.

In order to generalize our approach, it will he
assumed that the object furction is disterted by
a given filter function, termed H,(»,6), ard that
2-dimensional noise is added tc the listerted
result. The inverse Fourier transicrm of {f (5,6),
known as the impulse response, or tle point
spread function, is space invariant; it provides
a convenient way to characterize the distorting
influence. In photography, for instance, cae can
define an impulse response for the distortion
caused by a lack of optical fecus, by relative
motion between the subject and the camera
during the exposure, by finite shutter speed, and
by the
61, A

characterizes various types of circularly symmetric

optical effect of atinosnheric turbulence

simple Gaussian spread etfectively

point spread functions, e.g.
by () =exp [—r?/20%]/2za" (18)
wherer ¢ is variance, and r is distance from
the impulse or point of excitation. Given an
image, corrupted by a space-invariant point
spread, the distortion can be effectively attenuated
by a matched, cr inverse filter which negates
the effect of H;(p,0). As is known, an optimum
inverse filter function can be feund which (iremoves
noise in such a way that it) minimizes the mean

square difference hetween points of the object
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and the estimated image functions [7]. In general,
it can be written as

0. 0) = H\*(p,6) I[o((_’,m
HeO =5 faon G 9

where ¥, {0#) and ¥,.(n#) are the power

spectral densities of the object and the noise
signals, respectively. These may be estimated by
analyzing portions of a reconstructed object, the
noisy versicn, as it appears when passed through
a low pass filter with a relatively high cutoff
frequency [7]. Latter, we will discuss a method
of computing power spectra estimates. In order to
obtain an estimate of the optimum image of the
first slice of scme object, at least 2 constructions
are necessary: one for the broad band, unoptimized
image, and one for the estimate of the optimum
image. However, it may be reasonable to employ
the same power spectra functicns for additional
slices of the same chject, because the final image
is not a strong function of the details of the
power spectra.

If one assumes a Gaussian spread, -as in Eq,
(18) and also that ¥.(p,0) /% (p,8), termed n(p,5)’
exists at all frequencies, the optimum function
can be written as

Ho 6y = exp[—2rf2e*] ‘
O = T4 5 1 ) Qo

In a blurred picture, for instance, one may
suspect a defocused camera but he may not know
the variance cf the point spread function which
characterizes the defccusing. In such a case it is
reasonable to try a few values of ¢ and to choos®
the one which results in the clearest, most
pleasing final image.

In the noiseless case, Eq. (20) simplifies to

H (o) =expl +2z%2p%], @n

which cbviously must be set t¢ zero beyond a
certain radial {requency. A truncation cccurs
naturally when »(s,#) is included; infact, at fixed
6, the cutoff becomes quite sharp once exp[—
47220202 1< nip,0) as suggested by Fig.4. This is
because #°,(0,#) generaily drops much faster than
¥, (0,6) especialiy if the noise power spectrum is
white, or constant. A typical! power spectrum of

an image is given in Fig.5, Fig.6 is the reconst-

Fig.4. The general form o1 an inverse filter
which compensates for a Gaussian point.
spread or impulse response.
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Fig.5. The power spectra of circularly symm-
etric images. The frequency has been
multiplied by 64 so that 1 cycle per
unit distance is equal to 64 frequency
units.

Fig.6. An image of a cylinder. This image
was constructed by LSC, ie. by the
compensation, back projection, and the
linearsuperposition of the projection
data of an ideal cylinder (based on 180
views and an 80 X80 array).
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ructed image whose spectrum was estimated as
shown in Fig.5. As shown, the spectral power
decreases rapidly as frequeney increases, especially
in the low frequency domain.

When H, (p,6) =1,
well known noise filter follows from Eq. (19)

7, (0,0)
Fo(o.6) 2 020,00 @2)

Here H(p,#) may approach a sharp cutoff, or

a particularly simple and

H(p,0) =

ideal low pass filter. If there is reason to believe
that the power spectra are circularly symmetric,
as they should be in the case of
white noise, then Eq. (22) approaches a simple,

a cylinder and

circularly symmetric, low pass filter function.

At this point the details of the Fourier-convol-
ution procedure will be resumed and completed.

By fixing 6 at 4,, a 1-dimensional transform of
O(p,6,) can be found. It now becomes necessary
to define the term p(z’,¢) as the line integral
through the object function O(z,y):

P(x',¢)=ﬁ dy'O(z',y'). (23)

O(z’,y’), the object function expressed in a
rotated coordinate system, is assumed to be zero
outside of its boundary; p(z’,¢) can be closely
approximated by physical measurement in a strip
of finite width 4z’ (see Fig.1).

We will now introduce a relation which has
come to be called the “projection-slice theorem”
[8]. In short, this theorem states that

p(z, ) =F {0(p00}, @8
where F~! denotes the inverse [-dimensional
Fourier transform operation, and 6, and ¢; are
fixed values of ¢ and ¢. The proof of Eq. (24) is
as follows: The 1-dimensional transform of Eq.
@3) is

oo rb
Fiip(a', ¢} =J_wdz’e’2”""’Jddy' O(z'5') (25)

=[[" daz["_ay Oa,y yersmicurmsmin |
(26)
Therefore Eq. (25) is the 2-dimensional transf-
orm of O(z’,y’) on the line v'=( or =4, ie. it
is O(o.0)).
Returning to our explanation of the 1-dimensi-

onal convolution method, we have established the

following transform pairs:
§(z)=F "o (p,0)} @n
2z, ¢) =F4 {0 (0,6 }. 28)
Therefore, by the convolution theorem, Egq.
(13) can be expressed as
f(z',6) =¢&(z")xp(z's¢). (29)
The image function which follows from Eq. (12)
is
I(zy)=[ do f(="0) (30)

where z'=z cos (4) +y sin (6) and 8=¢—=/2.
Equations (29) and (30) express, in continuous
form, the Fourier-convolution procedure. It it
characterized by strictly real operations in polar
coordinates. We will now consider the digita

implementation of (29) and (30).

8. The Digital Implementation of the Four-

ier-convolution Procedure.

We will first imagine that I(z,y) is represented
in sampled form on a grid. In approximating Eq
(30), the values of f(z',¢) must be summed, or
superimposed at the sample points, i.e.

NV
I(Im:yn):"jgl: f(z',¢i), 1<mn<N, (31)

where NV=the number of descrete views(¢;),
At a given view, the l-dimensional f(z’,¢;) can
be imagined as being “back-projected” across the
entire plane. The problem, here, is that f(z',¢;)
will be available only at descrete z;/, necessitating
an interpolation to the sample points, a linear
interpolation being most logical [9].

An important aspect of digitization is the
selection of values for ¢(ndz’), where 4z’ is the
scanning beam width, and 2=0,1,2,3, N—1. The
&(ndz’) values are to bhe convolved with the
p(ndz’,) values, as suggested by Eq. (29). We
first consider numerical quadrature of Eg. (17),
the cosine transform. Our procedure involves
approximating the average of £(z’) within 4z,
and assigning the average values to the respective
&(ndz"). In order to provide a simple illustration,
H(p,0) will be assumed to be a circularly symmet-
ric low pass filter function. The result of a
particular set of calculations is given in Fig.7.



o4 System % ¢ TH-ALY 3A4L HF G4

100 db
B.W.
21
0 X
»
100 db
50db BW.
1 32
0 X
|
. -
100 db
50db b B.W.
64

o [ﬂlllﬂllllﬂlllllluu[fﬂululuun T

Fig.7. These spatial domain &(ndx’) were
computed from low pass filter functions;
three different cutoff frequencies, or
bandwidths (B.W.), were used. The
bandwidth wunits are scaled so that 1
cycle/unit distance equals 64 frequency
units. Positive values of £(ndz’) were
mapped into the positive portion of the
y-axis according to 20 log;, [&(ndz")];
negative values of 2£(ndz’) were mapped
into the negative portion of the y-axis
according to—20 logy, |£(ndz’)|; and n=
0,1,2,3,4,7,9.

Special cases of the above procedure may be
found in [5,9,10].

The filter function H(p,d) cannot bte realized
exactly because of digital error. Assuming, for
the moment, that the number of views NV can
be made sufficiently large so as to make the ang-
ular digitization error insignificant, &(nifz’) can
be viewed as a ]-dimensional digital filter,
approximating a given radial line of the 2-dim-
ensional filter function H (p,8). Sampling technig-

ues can be used in the design of such a filter

only if the input signal, O(z,y) is bandlimited’
i.e., if
0(p,8) =0, p>B.W. (bandwidth). (32)

satisfied, the

or “frequency

When the above conditions are
design techniques of “windowing”
be as
H(p,0)

sampling” can cause the realized filter to
close as possible, at a fixed N, to the
function [11, pp.239~268].

A spatial-domain approach by Cho, et al, has
realized a certain H(p) with a very high

bandwidth [12, 13]. In this approach ¢(p), assumed
to be circularly symmetric, is equated to |p]. It
that impulse

is recognized without |[p], the

response in the 2-dimensional spatial domain is
distorted into a 1/r spread.

The &(ndz’) are computed by forcing successive
values to approximately compensate for the 1/r
&(ndz'),
called “correction” or “deblurring” functions, are
off faster

function. Typically used sometimes
graphed in Fig.9. These seem to fall
than those of Fig.7: this is partly because the Fig.
7 functions are derived from bandwidth
filter functions. If desired, the Fig. 7 functions

could be tailored with a window, e.g. a Blackman

lower

window, as in Fig.9. Windows were found to not

harm the desired filtering action.

100 db

50db
Lsc  Enax)

100 db J J mumlmmlmaImllnuuuumu v x

50 db

SHEPP'S AND LOGAN'S &(nix"}

J “ﬂnﬂimllhuiuhll&illllllllulummuu.mrm x

Fig.8. These are examples of those &(ndz’)
which are most used in image reconst-
ruction. The scales are the same as
the scales of Fig.7.

Digital which Construct Images
Composed of Pixels. Programs based on sampling,

Shepp’s

Techniques
an interpretation sometimes given to
and Logan’s program, are not entirely compatible
with inputs which are averages over Jz’. Howe-
interpolation
creates an (L.A.
Shepp and J.B. Kruskal, “Computerized tomogra-
phy: the new medical X-ray technology,” publis-
hed in the American Mathematical Monthly).

The desire for compatibility with input beams,

ver, the program based on linear

entirely satisfactory image

output pixels, and the elimination of interpolation
in images has lead to some interesting approaches
Fig.10 shows that by calculating the beam-pixel
overlap, or weighting factors, one can generate
based on averaged, actually

equations area



19784 128 BT TR HI15E £ 6%

$0#) = [ p(a',0)4372161] do

F71[p] convolution kernel

T(a)”
-4

F(rena) = —~—5 5=
m{z) " (4n"~1)
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Fig.9. These are same as the LSC and Shepp’s
filter functions shown in Fig. 8 in linear
scale.

volume averaged physical properties of the
media. Programs have been devised to compute
the weighting factors at each angle, beam, and
pixel, typical dimensions being 180° 1° steps, 80
or 160 beams, and 8080 or 160X 160 pixels [13].
The weighting factors are usually placed on a
disk-file and called into core as they are needed.
At each beam of a given angle, the storage is
arranged so that about 150 real factors are
mapped to their respective pixels by about 150
.«concomitantly stored pointers.

The LSC, or Linear Superposition with Compe-
nsation, is essentially equivalent to the above
discussed Fourier convolution procedure, except
that precalculated weighting factors are used to
perform the superposition, as in Tig.10: the
&(ndz"), the

one derived in the spatial domain. After convo-

«compensation is provided by Cho's

lution with ¢(ndz’), the projected values are

backprojected and superimposed. The weighting

factors create a high quality, symmetrical image,
and because they are precalculated, LSC is almost
twice as fast as a program based on linear
interpolation between back-projected values. The
disadvantages of LSC are that a large data set
of precalculated weighting factors is required, at
each angle of the construction the program must
call for a portion of this external data, and
finally, LSC does not permit easy changes in the

number of beams per view, the number of views,

or the size of the image array.

07

PR st

g (norx) T e

Fig.10. The area (or volume) of a pixel which
is overlapped by a beam is termed the
“weighting factor”, w;j.

One of the iterative algorithms, the least
squares iteration, although relatively inefficient
and time consuming, deserves mention [14,15]. A
set of scans, as in Fig.10, yields % equations:
I=Wu (33)
Iis &X1,
and W is 2Ax N2 Typical dimensions are A=180X
80=14,400 and N2=80X80=6400. The least
squares iteration of Eq. (33)

where the dimension of u is N2X],

converges to the
unique solution which minimizes the squared
difference between the measured projections and
the calculated projections of the image. Conseq-
uently, this method is noise resistant.

When an optimal noise filter is used, a Fourier
-convolution procedure is also noise resistant.
Unlike the least squares iteration, this procedure
minimizes the squared difference between the

true object and the estimated image.

+a o, + dAx
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4. The Execution Speeds of Image Construc-

tion Algorithms.

If the least squares solution were done exactly,
it would be necessary to solve N2 linear equati-
ons; a typical procedure for this purpose, the
Gaussian elimination, requires at least N¢/3
multiplications. And then, the matrix of coeffici-
ents, although very sparse, would be of dimension
Nt which is excessively large. Assuming that
weighting factors are used, the least squares
iteration approximates the N2 unknowns in
roughly 2kMNs
number of views, and % the number of iterations,

multiplications, M being the

typically 20. The storage is about 2(N2+MN)
numbers, Never-the-less this algorithm is one of
the least efficient and is not widely wused at
present.

A reasonable measure of computational com-
plexity, and often, of execution speed, is the to-
tal number of real operations, additions, subtra-
ctions, localizations, and comparisons necessary
to complete a given program.

A 2-dimensional DFT procedure, involving
interpolation in the complex frequency domain
from a polar to a cartesian grid [8], can be
done in about (3MN+6N2) log,N+15N2 operations,
if a FFT algorithm is used. Execution is relatively
fast, but complex arithmetic must be used; more
significantly, since accurate interpolation, as
required, is difficuit in the structured, complex
frequency domain, a DFT procedure does no
always give the sharp image which can be obtained
by other methods. Consequently, this procedure is
not widely used.

Fourier-convolution algorithms are more popul-
ar. Storage requirements are modest, about N2
numbers. It’s easy to discover that Shepp’s and
Logan’s program takes about 16MN? operations,
assuming N beams per projection. Our LSC
programs take about 11M N2 operations. Actually,
our Data General minicomputer, a-Nova 1200
with disk pack, takes, on a certain construction,
20 minutes with Shepp's and Logan’s program,
and 14 minutes with LSC. In this case, the time

to make 180 calls to a data set of weighting

3k 324 whE AR

factors is not significant.

5. The Effect of ¢(n4x’) and of Noise om
the Reconstructed Image.

The Fig.6 cylinder defines a step response
whose features, e.g. steepness, depend on the
nature, e.g. the bandwidth, of the implied
2-dimensional filter function-H (p,6).This function
is approximately realized by way of the &(ndz’).
Various &(ndz’), derived from a low pass filter,
affect the step response of a central half section
of a cylinder as in Fig.11. Here it is seen that
the LSC function gives the steepest rise because
of its greater bandwidth.

0.8

INTENSITY

TATLT

E(n.kx')
. LSC
SHLPP'S AND LOGAN'S -
SMDWIDTH BW.) =21 1
. = 32 DIVISIONS !
. B = 64 DIVISIONS (
. BW. =178 D\\/I:lONS —i
L
34 16

SPATIAL UNITS

Fig.11. These step transition waveforms are
central half sections from images of
cylinders, like the one shown in Fig.6.
The various images were constructed
with the aid of several different types

of &(ndx').

Image formation by convolution, back-projection.
and superposition, as described above, depends
on a 2-dimensional balance of additions and.
subtractions, a balance which is upset by noise
in the p(z,',¢;), causing widespread error in the
final image. For example, if white, or random
noise, whose distribution is roughly Gaussian,
and whose variance is proportional to the square
root of the magnitude of p(z\’,¢:), is added to
the p(z,',¢;), the Fig.6 cylinder appears as in
Fig. 12. The effect appears everywhere and does
not particularly depend on the shape of the

object.
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Fig.12. The reconstructed (LSC) image of the
cylinder shown in Fig.6. Severe noise,

about 200% maximum added to the
line integrals, has ruined the impression
of a cylinder.

As has been discussed in connection with
equations (19) and (22), the
optimum noise filter depends on a knowledge of

definition of an

the power spectra of the object function and the

noise. Consequently, we must consider the
estimation of power spectra. Such estimates tend
to be crude, especially when the noise sample is
small, but they do provide insight into the
problem of optimum image processing.

A large diameter noisy disk was constructed

as in Fig.13 The power spectrum of the central

i i
”iwln

! /u. ,[r/

Fig.13. The reconstructed (LSC) image of a
large, uniform disk. The added noise,
in this case, is about 70% maximum.

64X 64 points was estimated as described in the
appendix. Various &{(ndz’) were used in this
construction, and their effect apgears in Fig.14.
The fluctuations and the differences in the overall
shape of these curves are belived to be due to
error in the estimate. It seems safe to conclude,
however, that above a certain frequency the
power decreases, leading one to conjecture that
the noise function, like the object function, is
filtered by H(p,6) and &(ndz"). As we expected,

the $(ndz’) derived by Cho et al passed the

higher frequency components, in agreement with
the observation that it also produced the sharpest.

0" —— T T

step response.
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Fig.14. These are estimates of the power
spectrum of the 2-dimensional noise
in the central portion of images similar
to Fig.13. These images were generated
by way of 3 different £(ndzx’).

The Fig. 12 since it was constructed

with a broad band filter, has sharp edges but is.

image,

excessively noisy. By recomputing this image,
using the £(ndz’) derived from the H(p) whose
bandwidth is 16 units, one can restore the image
in Fig.15.

The degradation in resolution is also apparent. A

of the cylinder. The result appears

truely optimum noise filter would retain as much
resolution as possible while reducing the noise to

a minimum[9, 16].

reconstructed by a
one used in
Fig.12. The difference is, the &(ndz')
was derived from a low pass H(p)
whose band width is 16 units. The
vertical scale is uncalibrated.

Fig.15. A noisy image,
method similar to the

Conclusion

We have outlined a generalized approach to

reconstruction from  projections. When the
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measurements contain noise, our approach was
to specify H(p,0) as an optimum, least squares
filter function. This optimum function, whose
definition depends on an estimate of the power
spectra of the noise and of the object, must be
derived from a “broadband” version of the, e.g.
an image constructed by LSC. So unless the
optimum function is known a priori, at least 2
constructions are necessary: the first serves to
define the optimum filter function; the second
serves to construct the ideally filtered image.
The subject of restoration was touched upon.
1f it is known that the measured projections are
representing an object with a known distortion,
i.e. an object signal which has passed through a
known filter, then the true object can be
approximated by passing the distorted signal
filter.  Our
H({p,6), or

as an optimum, least square

through a matched, or inverse
approach, again, was to
@(P,@) = Ile(Pte)’

inverse filter, implying at least 2 image constru-

specify

ctions.

Usually, image processing would start with an
imperfect image, digitize it in cartesian coordin-
ates, filter it with the appropriately designed filter
£17], and then, reconstruct the improved picture.
So in a sense, conyentional processing always
requires 2 image constructions. In tomography
the initial image ordinarily is constructed by a
Fourier-convolution, or by a LSC procedure. We
are suggesting that it is often convenient, during
the desired

the Ist construction, to realize

filtering by way of a formulation of
@(p,0). If this is

construct a blurred image, to filter

judicious
done, there is no need to

it, and then
construction,

to reconstruct the final picture;

restoration, and enhancement can be achieved
concurrenly.
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Appendix 2

A note on the estimation of 2-dimensional
power spectra A ]-dimensional power spectrum
[11, pp. 532~548] is the Fourier transform of
the autocovariance function, which, in a zero
mean process, is identical to the autocorrelation
function. The autocorrelation of a N-point sequ-

ence can be estimated as

1 N—|m|-1 |
cxz(m):'l‘v g ‘r(n)x(n+m)y {ml<N
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(A-1)
If one were to multiply by N/(N-|m|), the
average of z(n) X (n+m) would result; and if one
could take the limit of the average of z(n)X
(n+m) as N—co, he would obtain the definition
of the descrete autocorrelation.
The sequence z(n) X (n+m) of Eq. (A-1) is
effectively weighted by

N-—m],
wg(m) ={ N
0 otherwise; (A-~2)

A heuristic explanation of the utility of this

m{ <N

triangular or Bartlett “lag” window can be given
in continuous m-space, assuming the existance of
the autocorrelation ¢(m) and the power spectrum

P(f): if

Cox(m) =wg(m)e(m) (A-3)
then
P lf)=Ws(f)*P(f) (A-4)

Ws(f) has a main peak and many side maxima,
and causes the estimate P..(f) to approach
P(f).

The Bartlett window has some significant
computational advantages. For instance, the
Fourier transform of c,.(m) is

Nt
In(f)= %]

m=—(N-1)

Cie(m) exp (—2= jfm),

(A-5)

but it can'be shown that
In(f) =3 1 X(f)12 (A-6)

where X(f) is the ordinary DFT of the sequ-
ence x(a), 0<n<N—1:

N..

)= 3 z(n) exp(—2sifr) (A-7)
In(f) is called the “periodogram” and approx-
imates the power spectrum of z(n).
Unfortunately the variance of In(f) does not
vanisheas N—oo (see Oppenheim and Schafer, op.
cit., p. 542). A standard approach which reduces
the variance is to average over a number of
independent estimates of Ix(f), e.g. by dividing
the sequence into K segments and computing K
periodograms. For our purposes the standard
technique is modified as follows: The 2-dimen-
sional periodogram of NXN samples is computed
by a 2-dimensional DFT; if circular symmetry
can be assumed, the frequency domain values of
Iy, n(u,v) near circles(concentric about the orgin)
are averaged. This procedure is justified when
the object is circularly symmetric, or when the
samples are of random noise, because in these
cases one expects a

circularly symmetric

spectrum. Thus the spectrum is smoothed

without restorting to independent estimates.




