• Title/Summary/Keyword: 3차원 인체 데이터

Search Result 128, Processing Time 0.027 seconds

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

3D Human Shape Estimation from a Silhouette Image by using Statistical Human Shape Spaces (통계적 신체 외형 데이터베이스를 활용한 실루엣으로부터의 3차원 인체 외형 예측)

  • Dasol Ahn;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, we present a method for estimating full 3D shapes from given 2D silhouette images of human bodies. Because the silhouette only consists of the partial information on the true shape, it is an ill-posed problem. To address the problem, we use the statistical human shape space obtained from the existing large 3D human shape database. The method consists of three steps. First, we extract the boundary pixels and their appropriate normal vectors from the input silhouette images. Then, we initialize the correspondences of each pixel to the vertex of the statistically-deformable 3D human model. Finally, we numerically optimize the parameters of the statistical model to fit best to the given silhouettes. The viability and the robustness of the method is demonstrated with various experiments.

Articulated Body Editing System (다관절체 오브젝트 편집시스템)

  • 최혜욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.23-32
    • /
    • 1997
  • 사실감 있는 모델의 생성과 동작제어 기술은 컴퓨터 그래픽스와 가상 현실감 등의 다양한 응용 분야에서 이용되고 있다. 컴퓨터 애니메이션에 동작 제어의 대상이 되는 물체는 다관절체(articulated body)이며, 이 다관절체를 뼈대(link)와 관절(joint) 그리고 이를 둘러싸고 있는 피부로 모델링하고, 운동학(Kinematics), 동역학(Dynamics)를 적용하여 동작을 생성한다. 본 논문은 컴퓨터 애니메이션에서 사용할 수 있는 3차원 다관절체의 생성과 애니메이션을 위한 다관절체 오브젝트 편집 시스템에 관한 것이다. 다관절체를 관리하기 위한 다관절체의 데이터 구조를 설계하고, 사용자 인터페이스를 추가하여 대화식으로 다관절체의 골격을 정의한다. 정의된 다관절체의 골격과 물체의 모양을 나타내는 기하 데이터를 접합하여 애니메이션에 적합한 물체를 모델링하기 위한 스킨-스켈레턴 알고리즘을 제안한다. 모델링된 물체의 관절을 조작하여 키프레임 애니메이션으로 동작을 제어한다. SGI 워크스테이션에서 Open Inventor와 X/Motif를 이용하여 C++ 언어로 구현하였으며, 인체 모델을 대상으로 실험하였다.

  • PDF

Effective Volume Rendering and Virtual Staining Framework for Visualizing 3D Cell Image Data (3차원 세포 영상 데이터의 효과적인 볼륨 렌더링 및 가상 염색 프레임워크)

  • Kim, Taeho;Park, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, we introduce a visualization framework for cell image data obtained from optical diffraction tomography (ODT), including a method for representing cell morphology in 3D virtual environment and a color mapping protocol. Unlike commonly known volume data sets, such as CT images of human organ or industrial machinery, that have solid structural information, the cell image data have rather vague information with much morphological variations on the boundaries. Therefore, it is difficult to come up with consistent representation of cell structure for visualization results. To obtain desired visual representation of cellular structures, we propose an interactive visualization technique for the ODT data. In visualization of 3D shape of the cell, we adopt a volume rendering technique which is generally applied to volume data visualization and improve the quality of volume rendering result by using empty space jittering method. Furthermore, we provide a layer-based independent rendering method for multiple transfer functions to represent two or more cellular structures in unified render window. In the experiment, we examined effectiveness of proposed method by visualizing various type of the cell obtained from the microscope which can capture ODT image and fluorescence image together.

Development of the 3D Knee Protector for Yoga (요가용 3차원 무릎보호대 개발 및 평가)

  • Jung, Hyunju;Lee, Heeran;Chung, Ihn Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.4
    • /
    • pp.657-671
    • /
    • 2022
  • This study aims to develop three dimensional (3D) yoga knee protectors that provide excellent wearing comfort. Three types of pads were modeled using 3D human data: two types of 3.0-cm-wide pads separated into top and bottom with thicknesses of 0.1 cm (TPU-1: A) and 0.2 cm (TPU-2: B); and one type with three 0.2-cm-thick separated panels (TPU-S: C). Based on these models, five knee protectors were developed using 3D patterning and 3D printing. Types A, B, and C were integrated with 0.6-cm neoprene pads. Type D was fabricated with a donut-shaped 0.6-cm neoprene pad inserted, while Type E consisted of two discrete 0.6-cm neoprene pads embedded in the protector's upper and lower sides. Wearing comfort was evaluated in terms of fit, pressure, and cushioning while in a standing and kneeling position and while in motion. The findings suggest that the fabricated knee protectors were evaluated as comfortable to the individuals with knee pain, rather than those without knee pain. The individuals with knee pain preferred the soft pads made of neoprene positioned around the knee (NEO-S: E), while those without knee pain favored the cushioned pads with a pattern structure maintained by thin 3D-printed pads (TPU-1: A).

Development of Physical Human Bronchial Tree Models from X-ray CT Images (X선 CT영상으로부터 인체의 기관지 모델의 개발)

  • Won, Chul-Ho;Ro, Chul-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.263-272
    • /
    • 2002
  • In this paper, we investigate the potential for retrieval of morphometric data from three dimensional images of conducting bronchus obtained by X-ray Computerized Tomography (CT) and to explore the potential for the use of rapid prototype machine to produce physical hollow bronchus casts for mathematical modeling and experimental verification of particle deposition models. We segment the bronchus of lung by mathematical morphology method from obtained images by CT. The surface data representing volumetric bronchus data in three dimensions are converted to STL(streolithography) file and three dimensional solid model is created by using input STL file and rapid prototype machine. Two physical hollow cast models are created from the CT images of bronchial tree phantom and living human bronchus. We evaluate the usefulness of the rapid prototype model of bronchial tree by comparing diameters of the cross sectional area bronchus segments of the original CT images and the rapid prototyping-derived models imaged by X-ray CT.

A Study on Foot Shape by 3D Data of Female High School Students (3차원 데이터에 의한 여고생의 발 형태에 관한 연구)

  • Lee, Jeong-Eun;Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.4
    • /
    • pp.572-583
    • /
    • 2014
  • This study analyzes the foot shape of female high school students using 3D foot scan data based on a comparison with adult women (20s'-30s'). Data were collected from the foot anthropometry of 199 female high school students in Gwangju and Jeollanam-do. The right foot was measured indirectly by 3D laser scanner. There are 16 items in the foot anthropometric measurements. The $6^{th}$ Size Korea (measured by 3D scan data) is used for women's foot data. The results of the 3D measurements data investigation show that the foot length and foot width became longer and wider as the age increased. It is classified by three types after analyzing foot shape. Type 1 (28.1%) represented the shortest foot length, the narrowest foot width as well as the thick foot and long ankle shape. Type 2 (4.3%) represented the wide foot width such as the wide lateral ball width and semi-thickness shape. Type 3 (67.7%) referred to the widest foot width, flat foot and short ankle shape.

The Classification of Elderly Men's Feet - With the Three-dimensional Body Scanner Data of Size Korea - (노년 남성의 발 유형 분류 -Size Korea의 3차원 측정 데이터를 이용하여-)

  • Seok, Hye-Jung;Park, Ji-Eun
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.10
    • /
    • pp.50-59
    • /
    • 2007
  • This study has been conducted to classify elderly men's feet with the three-dimensional body scanner data of Size Korea. It was intended to assist the manufacturing of the shoes that can appropriately perform the functions of feet, by providing the specific information about the shapes of elderly men's feet that are altered as a result of aging and shoe-wearing for a long time. The findings are as follows. 1. The investigations into the average and standard deviation of the measurements and index values for the elderly men's feet showed a large personal difference in the items of length and circumference. 2. The factors constituting the elderly men's feet were observed to be the size of foot width(Factor 1), the central angle of feet and the extension of toes(Factor 2), the size of ankle(Factor 3), the positions of lateral malleolus and pternion(Factor 4), and the position and size of medial malleolus(Factor 5). 3. The cluster analysis for the classification of elderly men's feet produced three types of them.

Upper Back Somatotype Analysis for Development of Hanbok Jeogori Pattern of Female in Late 20s (20대 후반 성인 여성의 한복 저고리 패턴 개발을 위한 상반신 뒷면의 체형 분석)

  • Eom, Ran-I;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.23 no.5
    • /
    • pp.891-904
    • /
    • 2014
  • The objective of this study is to classify somatotypes of back-surface shape of women in their late 20s by using 3D body scan data(Size Korea 2010) in order to improve fitness of Hanbok Jeogori. The results were as follows: 1. According to the in-depth survey of the experienced expert's interview, most problems related to the fit were caused by the back area of Jeogori. 2. The result of factor analysis indicated that 6 factors were extracted and those factors comprised 82.85% of total variance. 3. According to the cluster analysis, back somatotypes of women in their late 20s were categorized by two types : straight type(54.1%) and bending type(46.9%). The results could be used as the Hanbok Jeogori to improve the fitness of back-surface shape.

Development of 3D Avata Character System using Body Model Deformations (인체 모델 변형을 이용한 3 차원 아바타 캐릭터 시스템 개발)

  • Shin, Gyu-Ha;Chang, Jae-Khun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.649-652
    • /
    • 2001
  • 현재 주류가 되고 있는 아바타 캐릭터는 2D 를 이용한 캐릭터에 코디를 바꾸는 형태가 주를 이루고 있으며, 3D 를 이용한 것 역시 코디를 바꾸는 수준을 벗어나지 못하고 있다. 본 논문에서는 3D 아바타 캐릭터 모델을 구성하고, 이 캐릭터를 데이터 변환기를 통해서 다시 17 개의 신체 부위로 나누게 된다. 각각의 분류된 부위는 높이, 넓이, 두께, 둘레 등으로 변형되어 아바타 캐릭터의 성장을 이끌어내는 시스템을 개발한다. 이를 통해서 원래의 아바타라는 의미에 더 근접한 아바타 캐릭터를 구성할 수 있게 된다.

  • PDF