• Title/Summary/Keyword: 3차원 인체 데이터

Search Result 128, Processing Time 0.024 seconds

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

Analysis of Middle-aged Men's Frontal Body Shape Asymmetry using 3D Body Scan Data (3차원 인체 스캔 데이터를 활용한 중년 남성 정면 비대칭 체형 특성 분석)

  • Minseon Lee;Dong-Eun Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.511-530
    • /
    • 2023
  • This study aims to analyze middle-aged men's frontal body shape asymmetry by measuring the left and right body dimensions and angles of 388 middle-aged men aged 40 to 59 using 3D body scan data and comparing the measured values. The study also compares the measured values of width, height, and angle and their relationships using Size Korea's anthropometric measurement and posture index of the New York Posture Rating Scale. The results confirm that the asymmetric shape characteristics of the upper and lower body appear differently. In addition, the asymmetrical characteristics between the upper and lower body differed, indicating that the close parts of the body affect each other. Similar to the difference in the left and right frontal body shapes and the average angle distribution, the asymmetrical upper and lower body characteristics also are found to be dissimilar when the correlations are examined. In contrast, there is no asymmetry in the width, height, and angle considering the age and BMI groups. Finally, the study classifies three body types and identifies their asymmetric characteristics. Overall, this study contributes primary data for further research on pattern production for asymmetric and unique body types and the development of customized apparel products.

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering (CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발)

  • Seo, Jeong Min;Han, Min Cheol;Lee, Hyun Su;Lee, Se Hyung;Kim, Chan Hyeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2017
  • In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

Development of 2D Patterns for Cycling Pants using 3D Data of Human Movement and Stretch Fabric (동작시 3D 정보를 이용한 2D 패턴 전개 및 신축성 원단의 신장률을 고려한 사이클 팬츠 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Korean Journal of Human Ecology
    • /
    • v.19 no.3
    • /
    • pp.555-563
    • /
    • 2010
  • With recent advances in 3D scanning technology, three-dimensional (3D) patternmaking is becoming a powerful way to develop garments pattern. This technology is now applicable to the made to measure (MTM) system of both ordinary and tightly fitting garments. Although the pattern of fitted clothing has been developed using 3D human data, it is still interesting to develop cycling pants by considering while-cycling body posture and fabric elasticity. This study adopted the Garland's triangle simplification method in order to simplify data without distorting the original 3D scan. Next, the Runge-Kutta method (2C-AN program) was used to develop a 2D pattern from the triangular pixels in the 3D scanned data. The 3D scanned data of four male, university students aged from 21 to 25, was obtained using Whole body scanner (Model WB4, Cyberware, Inc., USA). Results showed the average error of measurement was $4.58cm^2$ (0.19%) for area and 0~0.61cm for the length between the 3D body scanned data and the 2D developed pattern data. This is an acceptable range of error for garment manufacture. Additionally, the 2D pattern developed, based on the 3D body scanned data, did not need ease for comfort or ease of movement when cycling. This study thus provides insights into how garment patterns may be developed for ergonomic comfort in certain special environments.

2D Pattern Development of Body Surface from 3D Human Scan Data Using Standing and Cycling Postures (3D 스캔을 이용한 사이클 동작 전후 체표 변화 고찰 및 2D 전개 패턴의 비교)

  • Jeong, Yeonhee;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.21 no.5
    • /
    • pp.975-988
    • /
    • 2012
  • Although the pattern development for tight-fitting clothing has been carried out using 3D data on humans, the pattern development using 3D scan data obtained for various postures still remains an interesting subject. In this study, we have developed the 2D pattern using the 3D human body reflecting standing and cycling postures. The 3D scan data of a subject was obtained using Cyberware. 2C-AN program(Triangle simplification and the Runge-Kutta method) was used in the system to reduce the 3D scan data points and to make segmented triangular patches in a plane from 3D data. As results, surface distance and area of each body part of standing and cycling postures were also provided for the future application of the functional clothing construction. The area of center piece on the front (c.front) decreased by $106.45cm^2$(-13.08%) and that of lateral piece(s.back) on the back increased by $144.96cm^2$(18.69%) in the patterns of cycling posture. The girth of neck and waist for the cycling posture increased by 0.88cm (3.92%) and 1.56cm(4.40%) respectively, and the that of thigh decreased by 1.01cm(-2.24%). The differences between the area in the 2D pattern obtained from the 3D scan data and that in the 3D scan surface data for standing and cycling postures were very small($-10.34cm^2$(-0.32%) and $-44.33cm^2$(-1.32%)).

Analysis on Lower Body Type and 3D Virtual Appearance Evaluation of Boots cut Jeans for Women (성인여성의 하반신 체형분석 및 부츠 컷 청바지의 가상 외관평가)

  • Choi, Jin;Do, Wol-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.2
    • /
    • pp.73-83
    • /
    • 2008
  • The focus of this research was concerned with studying lower body type for Korean adult females. information from the measuring values based on research on the physical standard of the nation(2004) were summarized, in addition a factor of the need for appropriate fit in boots cut jean wear, basic lower body part applying to each item had to be taken into consideration to enhance sizing suitability. The body type are classified into three kinds by means of factor analysis and cluster analysis. Type 1 referred to the fat lower body, having thick rounding waist. compared to other body parts, and long leg according to its proportion. Type 2 represented medium stature but with a large skeleton structure of lower body. Type 3 represented a the long lower body having slender rounding waist. This study was attempted to evaluate the fitness of boots cut jeans pattern for women using 3D Clothes Modeling Software.

A study of Developing Torso Master Pattern Using 3D body Measurement Data - Focusing on Women in their thirties proper Body Types - (3차원 인체형상자료를 활용한 토르소 마스터패턴 개발 - 30대 바른 체형 여성을 대상으로 -)

  • Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.447-461
    • /
    • 2015
  • The purpose of this study is to develop a torso pattern that is highly representative for the proper body shape of women in their thirties. Size data of the women with age of 30 through 39 from the database of Size Korea 2004 were used for the study. In order to develop a master pattern which will be used as the benchmark for grading of research group, 4 existing torso block drafting methods were compared based on the data gathered and the block with the highest evaluation score was utilized as a reference point. For the analysis, data was divided into four types, only the data of 138 subjects which were evaluated at least by four or more experts as valid were used for the study. The major results can be summarized as follow. The women of bust girth of 91cm and height of 160cm which was turned out to be representative type of research group were used as standard measurement for the purpose of reflecting not only curve length of the 3D analysis measurement but also the difference between front and back thickness to the pattern. Dart locations were set based on front and back torso ease, shoulder area revisions, front sagging length 1.5cm and cross section crevice length analysis. According to the experts' appearance evaluation of the pattern was found to be better than the control pattern which was regarded as the best among 4 patterns created based on existing torso block drafting methods.

Comparison of the Editing Method of Missing Area in 3D Scanned Image of Men's Crotch (3차원 스캔한 인체 샅부위의 결측부위 복원 방법 비교)

  • Kim, So-Young;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.3
    • /
    • pp.401-409
    • /
    • 2009
  • The shape of crotch area is very important to develop functional clothing as well as other ergonomic goods such as chair or saddle etc. However, it is inevitable that 3D scanned image of crotch would have missing part due to its folded shape including overlapping legs nearby. Therefore, the objectives of this research was to compare reconstruction methods of missing parts at crotch using seven dummies of real men's replicas. Two reconstruction methods adopted were kinds of 'fill- hole' in Rapidform 2004, one was 'smooth' and the other was 'curvature'. Each restored image was compared with the original shape of the dummies. As results, the average distance was 0.66mm between original and 'smooth' treated images and 0.59mm between original and 'curvature' treated, which was not statistically different. Average area of restored crotch region was $8740.04cm^2$ by 'smooth' method and $8405.02cm^2$ by 'curvature' method which is close to the original area of $8413.76cm^2$. Statistical difference was found between images of original and 'smooth' ones$(p=0.04^*)$. However, there was no difference between original and 'curvature' treated images, which indicates that 'curvature' method is more useful to fill the hole compared with 'smooth' method.

Upper Body Type Classification of Elementary School Boys Using 3D Data (3차원 데이터를 활용한 학령기 남아의 상반신 체형 분류)

  • Kim, Hyun Wook;Nam, Yun Ja
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.789-799
    • /
    • 2019
  • This study classified and analyzed the upper body types of 7-13 years old elementary school boys, using 3D data from the 6th Size Korea. The results of this study are as follows. Seven factors were extracted from the factorial analysis as an independent factor for a cluster analysis. The cluster analysis generated four body types. Type 1 has large ratio of front and back depth as well as circumference, with a front protrusion. In Type 2, the vertical value of upper torso is longer than average; in addition, its flatness is the largest and produces a thin body type. Type 3 has a smaller flatness in the bust, waist, abdomen and hip than other types, while also having the largest BMI. Type 4 is characterized by a greater shoulder angle than other types and its other factors are close to average. As a result of the logistic regression analysis, the prediction model used eight variables to generate and its accuracy is 88.679%. The classification of upper body types from this study can be used as basic data to improve patternmaking for each body type. The generated prediction model is also expected to be used as a method to help classify upper body types using the eight variables.

Analysis of female student's body shape of the late adolescent (청소년 후기 여학생의 체형 유형화 분석)

  • Jeon, Seong-Yeon;Cha, Su-Joung
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.1
    • /
    • pp.95-108
    • /
    • 2018
  • This study analyzed the body shape of the body of 17~19 years old female students using the SPSS 20.0 statistical program according to the 7th Korea Human Body Survey. Factor analysis was based on six factors including body size, body height, shoulder length, and width, upper body length, hip length, and shoulder inclination related factors. Through this cluster analysis, the body shape of late adolescent female student was classified into four types. Body type 1 was the highest body height factor, and the upper body length and the hip length factor were lower. It was analyzed as 'Long leg in the body'. Body type 2 is the 'narrow shoulder skinny type' with high hip and shoulder slope factors and low body size, body height, shoulder length, and width factor. Body type 3 showed body size, shoulder length, height and hip length factor, and body height factor was rather low 'low hip obese body shape'. Body type 4 was analyzed as 'lower shoulder long upper body type' with higher upper body length factor and lower body size and shoulder slope factor. It is thought that when the pattern is made, it is possible to produce excellent patterns by fitting the dimensions of the body, as well as the dimensions of the shoulder width, the slope, and the hip length.