• Title/Summary/Keyword: 3차원 유한요소

Search Result 1,510, Processing Time 0.025 seconds

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis (지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석)

  • Kim, Bum-Joo;Jung, Jae-Hoon;Jang, Yeon-Soo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.101-113
    • /
    • 2012
  • The degradation of a tunnel drainage system leads to increases in pore water pressure around the tunnel and the lining stress, which results in affecting the tunnel stability. In the present study of the Namsan 3th tunnel, more than 30 year old tunnel, the effects of the drainage performance reduction due to drain hole clogging on the tunnel lining stability were investigated by examining pore water pressure distribution around the tunnel and the lining stresses through numerical analysis. Groundwater flow modeling on the Mt. Namsan region was done first and 3D seepage and coupled stress-pore water pressure finite element analysis were performed on the tunnel using the results of the groundwater flow modeling. The pore water pressure distribution and the tunnel lining stresses could be predicted using a drain hole outflow data measured in the tunnel site. This analysis method may be used to evaluate the current stability of old tunnels for which in most cases field investigations and related information are not readily available.

Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil (사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석)

  • Song, Su-Min;Shin, Jong-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.5-16
    • /
    • 2023
  • The effect of raft flexibility on piled raft foundations in sandy soil was investigated using a numerical analysis and an analytical study. The investigation's emphasis was the load sharing between piles and raft following the raft rigidity (KR), end-bearing conditions. The case of individual piles and subsequently the response of groups of piles was analyzed using a 3D FEM. This study shows that the αpr, load-sharing ratio of piled raft foundations, decreases as the vertical loading increases and as the KR decreases. This tendency is more obvious when using friction piles compared to using end-bearing piles. The effect of raft rigidity is found to be more significant for the axial force distribution - each pile within the foundations has almost similar axial forces of the pile head with a flexible raft; however, each pile has different values with rigid rafts, especially with the end-bearing piles. The axial force of the pile base with floating piles shows similar point-bearing resistance for all the piles; however, it shows different values with end-bearing piles. The differential settlement ratio of rafts showed a larger value with lower KR.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS ACCORDING TO IMPLANT THREAD DESIGN UNDER THE AXIAL LOAD (수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석)

  • Kim, Woo-Taek;Cha, Yong-Doo;Oh, Se-Jong;Park, Sang-Soo;Kim, Hyun-Woo;Park, Yang-Ho;Park, Jun-Woo;Rhee, Gun-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • There are three designs of thread form in screw type implants: V-thread, Reverse buttress thread and Square thread. The purpose of this study was to find out how thread form designs have an influence on the equivalent stress, equivalent strain, maximum shear stress and maximum shear strain and which design of thread form generates more maximum equivalent stress and strain. 3-D finite element analysis was used to evaluate the stress and strain patterns of three tread types. The results of this study were as follow. 1. Under the 200N of axial load, the value of maximum equivalent stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 2. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and smallest in square thread. 3. Under the 200N of axial load, the value of maximum shear stress is smallest in square thread and there is no significant difference between that of V thread and reverse buttress thread. 4. Under the 200N of axial load, the value of maximum equivalent strain is largest in V thread and there is no significant difference between that of square thread and reverse buttress thread. 5. Above results show that the square thread has special advantages in stress and strain compared with other thread types, especially in shear stess which is most determinant to implant-bone interface. Considering the superior biomechanical properties of square form implant, we presume that square form implant has better clinical results than the other types of implants in the same clinical conditions.

  • PDF

Analysis of Fault Attitudes by Using Trajectories of the Maximum Longitudinal Displacement on Tunnel Face (터널 굴진면 최대 수평변위의 변화 양상에 따른 단층 자세 분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.393-401
    • /
    • 2016
  • In the present study, fault attitudes and the locations of appearance of faults in tunnel faces were predicted by analyzing the trajectory of the maximum longitudinal displacement immediately before the appearance of faults through three-dimensional finite element analysis. A total of 28 fault attitude models were used in the analysis. Those faults that have drives with dip appear first in the upper part of tunnel faces as tunnel excavation progresses and their maximum longitudinal displacement shows a tendency to move from the middle part to the upper part of tunnel faces. Those faults that have drives against dip appear first in the lower part of tunnel faces as tunnel excavation progresses and their maximum longitudinal displacement shows a tendency to move from the middle part or middle upper part to the lower part of tunnel faces. In addition, when the dip of faults is larger the maximum longitudinal displacement moves from the left upper part toward the wall part in the case of drive with dip models and from the left lower part toward the wall part in the case of drives against dip models. Therefore, it was indicated that the attitudes of faults distributed ahead of tunnel faces and the locations where faults appear in tunnel faces can be predicted by analyzing the longitudinal displacement trajectory of tunnel faces following excavation.

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

STRESS DISTRIBUTION OF PERIODONTALLY INVOLVED TEETH RESTORED WITH VAR10US POSTS -THREE-DIMENSIONAL FINITE ELEMENT STUDY- (치주 지지가 감소된 소구치에서 포스트가 치근 응력 분포에 미치는 영향에 대한 3차원 유한요소법적 연구)

  • Jeong, Hye-Jin;Yoo, Jae-Heung;Oh, Nam-Sik;Kim, Han-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.567-578
    • /
    • 2007
  • Statement of problem: The endodontically treated tooth is generally restored with post and core, owing to the brittle and the loss of large amount of tooth structure. As periodontal treatment was developed, there are many cases that periodontally involved teeth used in prosthetic treatment. Purpose: The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post materials and the amount of remaining alveolar bone height. Material and method: The 3-dimensional finite element models of mandible 1st premolars were divided into six types according to the various amount of remaining alveolar bone and post type. All types were modeled using equal length, diameter and shape of the post. Three types of post and core materials were used: prefabricated titaniumpost and amalgam core, prefabricated stainless steel post and amalgam core, and cast gold post and core. 300 Newton force was applied to functional cusp of mandible 1st premolar. Results: The results were as follows: First, there was no apparent difference in the pattern of stress distribution according to the alveolar bone condition concentrate on the post middle area. Second, there was difference in pattern of stress distribution according to the core materials, gold post and core generated same than amalgam core. Third, there was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. But a cast gold post and core generated the lowest maximum stress value, a stainless steel post generated the highest maximum stress value. Fourth, in the reduced alveolar bone model, maximum stress value is 1.5 times than that of the normal alveolar bone model. Conclusion: Within the limitations of this study, to provide minimal stress to the root with alveolar bone reduced, the post length may be as long as apical seal was not destroyed. To prevent fracture of tooth, it is rational to use gold alloy which material was good for stress distribution for post materials.

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Load-Settlement Characteristics of Concrete Top-Base Foundation on Soft Ground (연악지반에 시공된 팽이말뚝기초(Top-Base)의 하중-침하량 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Soo-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • The behavior of the Top-Base foundation was investigated by carrying out 3D finite element method. Special attention is given to the settlement behavior of concrete Top-Base foundation due to the consolidation settlement of the embedding depth and the effect of footing dimensions which are not included in the practical design. To obtain the detailed informations, a series of numerical analyses were performed for different pile configurations. It is shown that as the number of piles in a group increases, the calculated settlement also increases. However, for the $7\times7$ group, there is no further increase in settlement. Based on this study, it is found that the total settlement of Top-Base foundation is highly influenced by the consolidation settlement and footing configurations. It is also found that the current design method overestimates the settlement, and thus, needs to be modified and supplemented.