• Title/Summary/Keyword: 3차원 오차

Search Result 1,047, Processing Time 0.03 seconds

Camera and Flash Calibration for 3D Shape Acquisition on a Smartphone (스마트폰에서의 3차원 형상 취득을 위한 카메라와 플래시의 보정 기법)

  • Won, Jae-Hyun;Park, In-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.294-295
    • /
    • 2011
  • 본 논문에서는 스마트폰의 카메라와 플래시를 이용한 Shape from Shading 방법으로 3차원 형상 취득을 위한 카메라와 플래시의 보정 기법을 제시한다. 영상에서 관찰되는 화소 값은 카메라의 반응곡선에 의해 비선형적으로 표현되고 렌즈의 왜곡으로 인해 3차원 형상 복원에 오차를 발생 시킨다. 기하학적(geometric) 보정과 방사량(radiometric) 보정, 플래시 보정을 수행함으로써 3차원 형상 복원의 오차를 줄인다.

GPS를 이용한 대류권 수증기의 3차원 분포도 결정을 위한 습윤지면 추정 정확성 향상

  • 박관동;하지현;박종욱
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.44-44
    • /
    • 2004
  • GPS를 이용하여 대기 수증기의 3차원 분포도를 구하기 위하여, 관측소와 GPS 위성 간 시선방향으로의 수증기에 의한 GPS 신호지연 정도를 결정할 필요가 있다. 이 때 정확성 향상을 위하여 반드시 고려해야하는 위상중심변화(phase center variations)와 조석하중에 의한 지각변위(ocean loading displacements) 등 수직방향 좌표 결정 오차를 유발하는 요인들을 소개한다. 타 연구를 통해 위상중심변화는 크게는 l0cm 이상의 오차를, 그리고 조석하중에 의한 지각변위는 한반도의 경우 최대 3-4cm 정도의 오차를 보임을 알았지만, 이들 오차가 시선방향 습윤지연 결정에 미치는 영향은 규명되지 않았다. (중략)

  • PDF

Volumetic Error Compensation of a Coordinate Measuring Machine using a Software Method (3차원 좌표 측정기의 Software에 의한 Volumetric 오차 교정)

  • Park, June-Ho;Lee, Eung-Suk;Yang, Jong-Hwa;Cho, So-Hyug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 1994
  • A volumetric error compensation method was stueide with measuring systematic error of a Coordinate Measuring Machine(CMM). The volumetric error equations were proposed for a Moving Bridge type CMM. Using the error equations, error vectors in the measuring volume were corrected by a software method. The CMM was controlled by the compensation program separately in the measuring and moving function of the CMM proving. The linear accuracy of the CMM was measured by the Laser Interferometer and compared with the data before the volumetric error compensation. This method was proved as low cost and effective to reduce the systematic error of the CMM, as no hardware modification is required.

  • PDF

SIFT Weighting Based Iterative Closest Points Method in 3D Object Reconstruction (3차원 객체 복원을 위한 SIFT 특징점 가중치 기반 반복적 점군 정합 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.309-312
    • /
    • 2016
  • 최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.

  • PDF

The 3-Dimensional Localization System Based on Beacon Expansion and Coordinate-Space Disassembly (비컨노드 확장과 좌표공간 분해 기반 3차원 위치인식시스템)

  • Lee, Ho Chul;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.80-86
    • /
    • 2013
  • The 3-Dimensional(3D) localization system based on beacon expansion and coordinate-space disassembly for the design of the 3D localization system in indoor environment is proposed and the performance of the proposed system is analyzed in this paper. The localization ratio of the 3D localization system adapts the proposed algorithm is analyzed by the calculation of errors occurred in the coordinates that the mobile node locates. It is indicated that the average error distance of the 3D localization system adapts the proposed algorithm is less than that of the 3D localization system not adapts the proposed algorithm as 0.47m. The localization average distance error in 12 coordinates is indicated that the 1.5m case is less than 2.5m case as 0.38m by some experimentations under the condition that the distances between the ceiling and the mobile node are 1.5m and 2.5m measured from the ceiling respectively. It is seen that the 3D localization system based on beacon expansion and coordinate-space disassembly can improved the degradation of the quality of service that is caused by some conditions and performance differences in sensors.

Development of computer aided calibration module for CMMS and machine tools using a compensated step gauge

  • Pahk, Heuijae;Kim, Jonghoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.444-453
    • /
    • 1992
  • 이 논문은 스텝게이지와 마이크로 컴퓨터를 이용하여 온라인으로 3차원좌표측정기의 오차를 보정하는 시스템에 관한 것이다. 이때 사용하는 스텝게이지는 미리 교정을 실시하여 그 교정데이타를 컴퓨터상에 저장하고 있다. 측정기의 작업영역안에서 어떠한 방향으로 스텝게이지가 놓여 있어도 초기점을 지정하면 CNC타입의 코드를 자동으로 생성하여 스텝게이지 측정을 실시하며 그 측정결과는 3차원 좌표측정기의 오차를 보정하는데 사용된다. 결과적으로 경제적이고 실용적인 오차보정 시스템을 구현할 수 있다.

  • PDF

Analysis of the GPS Error Effect through Simulation (시뮬레이션을 통한 GPS 오차의 영향 분석)

  • Jeon, Jae-Han;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.397-405
    • /
    • 2008
  • The position accuracy is primarily dependent on the satellite position and signal delay caused by several elements. To know the effect of the delay on the estimated positions, we simulated GPS raw data (RINEX) with GPS errors using Bernese ver5.0. GPS errors used in this paper are Ionospheric delay, Cycle slip, Troposphere, DOP and Random error. If the baseline is short, the position error according to TEC is not large, since the ionospheric delay effect can be removed by ion-free combination. However, if the baseline is long, 3 dimensional position error up to 10cm is occurred. The 3D position error of coordinates with cycle slip is hardly ever changed up to 60% of cycle slip. Because the simulated cycle slips are equally distributed on satellites, the positioning was not seriously affected by the cycle slip. Also, if percentage of cycle slip is 60%, three dimensional error is sharply increased over 1m. The position error is calculated by using the observation data (2 hours) which was selected by DOP less than 3. And its accuracy is more improved about $3{\sim}4cm$.

The Reflected Property Analysis of 3D Laser Scanning System as Object Surface Materials (대상물 표면물질에 따른 3차원 레이저스캐닝 시스템의 반사특성분석)

  • Um, Dae-Yong;Kim, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2009
  • Recently many kind of industry request 3D Modeling and visualize for object. So application of 3D laser scanning system is improved for 3D modeling and survey. But although application of scanner is steady improved, there are variety of caution error is contained in the result. There is request high quality survey for it is restricted by when field. To analysis what is consider major factor of reflect ratio about surface specification as ratio and characteristics accidental error. So this research use 3D laer scanning system what is adopted method of laser measurement for improvement accuracy 3D scan data. As a result we can check reflect volume will be improve as specification of survey object if it has high reflect ratio. It able to improve accuracy how laser scan data is revised by reflect volume.

A Numerical Analysis to Predict the Temperature Distribution around a Cold Storage Cavern (지하암반 냉동저장고 주변의 온도분포 예측을 위한 수치해석)

  • 이규상;이정인
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • To predict the temperature distribution around a underground rock storage cavern, two- and three- dimensional numerical analysis using FLAC was conducted. The effects of groundwater and latent heat on thermal properties were considered in numerical calculation. The temperature estimated by FLAC are compared with the temperature measured for 5-year operation at Gonjiam storage cavern. Estimated and measured temperatures showed great discrepancy when thermal properties from laboratory tests were used and showed good agreement when the effects from 20% of volumetric water fraction and latent heat were considered. However, the discrepancy still increased with operation time due to the heat flow from ground surface. Three-dimensional numerical models were established to closely approximate the boundary condition of the test site, and numerical results better agreement when groundwater and latent heat effects were considered.

Evaluation of the Interfraction Setup Errors using On Board- Imager (OBI) (On board imager를 이용한 치료간 환자 셋업오차 평가)

  • Jang, Eun-Sung;Baek, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2009
  • When using Image Guided Radiation Therapy, the patient is placed using skin marker first and after confirming anatomical location using OBI, the couch is moved to correct the set up. Evaluation for the error made at that moment was done. Through comparing $0^{\circ}$ and $270^{\circ}$ direction DRR image and OBI image with 2D-2D matching when therapy planning, comparison between patient's therapy plan setup and actual treatment setup was made to observe the error. Treatment confirmation on important organs such as head, neck and spinal cord was done every time through OBI setup and other organs such as chest, abdomen and pelvis was done 2 ~ 3 times a week. But corrections were all recorded on OIS so that evaluation on accuracy could be made through using skin index which was divided into head, neck, chest and abdomen-pelvis on 160 patients. Average setup error for head and neck patient on each AP, SI, RL direction was $0.2{\pm}0.2cm$, $-0.1{\pm}0.1cm$, $-0.2{\pm}0.0cm$, chest patient was $-0.5{\pm}0.1cm$, $0.3{\pm}0.3cm$, $0.4{\pm}0.2cm$, and abdomen was $0.4{\pm}0.4cm$, $-0.5{\pm}0.1cm$, $-0.4{\pm}0.1cm$. In case of pelvis, it was $0.5{\pm}0.3cm$, $0.8{\pm}0.4cm$, $-0.3{\pm}0.2cm$. In rigid body parts such as head and neck showed lesser setup error compared to chest and abdomen. Error was greater on chest in horizontal axis and in AP direction, abdomen-pelvis showed greater error. Error was greater on chest in horizontal axis because of the curve in patient's body when the setup is made. Error was greater on abdomen in AP direction because of the change in front and back location due to breathing of patient. There was no systematic error on patient setup system. Since OBI confirms the anatomical location, when focus is located on the skin, it is more precise to use skin marker to setup. When compared with 3D-3D conformation, although 2D-2D conformation can't find out the rolling error, it has lesser radiation exposure and shorter setup confirmation time. Therefore, on actual clinic, 2D-2D conformation is more appropriate.

  • PDF