• Title/Summary/Keyword: 3차원 손 인터페이스

Search Result 34, Processing Time 0.018 seconds

Gaze Detection by Computing Facial and Eye Movement (얼굴 및 눈동자 움직임에 의한 시선 위치 추적)

  • 박강령
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.79-88
    • /
    • 2004
  • Gaze detection is to locate the position on a monitor screen where a user is looking by computer vision. Gaze detection systems have numerous fields of application. They are applicable to the man-machine interface for helping the handicapped to use computers and the view control in three dimensional simulation programs. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.8 cm of RMS error.

In-Situ based Trajectory Editing Method of a 3D Object for Digilog Book Authoring (디지로그 북 저작을 위한 3D 객체의 In-Situ 기반의 이동 궤적 편집 기법)

  • Ha, Tae-Jin;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2010
  • A Digilog Book is an augmented reality (AR) based next generation publication supporting both sentimental analog emotions and digitized multi-sensory feedbacks by combining a conventional printed book and digital contents. As a Digilog Book authoring software, ARtalet provides an intuitive authoring environment through 3D user interface in AR environment. In this paper, we suggest ARtalet authoring environment based trajectory editing method to generate and manipulate a movement path of an augmented 3D object on the Digilog Book. Specifically, the translation points of the 3D manipulation prop is examined to determine that the point is a proper control point of a trajectory. Then the interpolation using splines is conducted to reconstruct the trajectory with smoothed form. The dynamic score based selection method is also exploited to effectively select small and dense control points of the trajectory. In an experimental evaluation our method took the same time and generated a similar amount of errors as the usual approach, but reduced the number of control points needed by over 90%. The reduced number of control points can properly reconstruct a movement path and drastically decrease the number of control point selections required for movement path modification. For control manipulation, the task completion time was reduced and there was less hand movement needed than with conventional method. Our method can be applicable to drawing or curve editing method in immersive In-Situ AR based education, game, design, animation, simulation application domains.

  • PDF

Implementation of Paper Keyboard Piano with a Kinect (키넥트를 이용한 종이건반 피아노 구현 연구)

  • Lee, Jung-Chul;Kim, Min-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.219-228
    • /
    • 2012
  • In this paper, we propose a paper keyboard piano implementation using the finger movement detection with the 3D image data from a kinect. Keyboard pattern and keyboard depth information are extracted from the color image and depth image to detect the touch event on the paper keyboard and to identify the touched key. Hand region detection error is unavoidable when using the simple comparison method between input depth image and background depth image, and this error is critical in key touch detection. Skin color is used to minimize the error. And finger tips are detected using contour detection with area limit and convex hull. Finally decision of key touch is carried out with the keyboard pattern information at the finger tip position. The experimental results showed that the proposed method can detect key touch with high accuracy. Paper keyboard piano can be utilized for the easy and convenient interface for the beginner to learn playing piano with the PC-based learning software.

A Study on Virtual Reality Techniques for Immersive Traditional Fairy Tale Contents Production (몰입형 전래동화 콘텐츠 제작을 위한 가상현실 기술에 대한 연구)

  • Jeong, Kisung;Han, Seunghun;Lee, Dongkyu;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.43-52
    • /
    • 2016
  • This paper is to study techniques of a virtual reality to maximize the depth of the users' immersion based on differentiated interactive contents using korean traditional fairy tale. In order to increase more interests in korean traditional fairy tale, we produce a interactive 3D contents and propose a new approach to a system designing applying a virtual realities such as HMD, Leap motion. First, using Korean traditional fairy tale, we generate interactive contents consisting of scenes intensifying user's tensions while interaction of game process. Based on the interactive contents generated, we design scene generation using Oculus HMD, the gaze based input processes and a hand interface using Leap motion, in order to provide a multi dimensional scene transmission and an input process method to intensify the sense of the reality. We will verify through diverse tests whether the proposed virtual reality contents based on a technique of an input process will actually intensify the immersion in the virtual reality or not while minimizing the motion sickness of the users.