• Title/Summary/Keyword: 3차원 모델 변형

Search Result 315, Processing Time 0.028 seconds

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Numerical Simulation of Irregular Airflow in OWC Wave Generation System Considering Sea Water Exchange (해수교환을 고려한 진동수주형 파력발전구조물에서 불규칙공기흐름에 관한 수치해석)

  • Lee, Kwang Ho;Park, Jung Hyun;Cho, Sung;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.128-137
    • /
    • 2013
  • Due to the global warming and air pollution, interest in renewable energies has increased in recent years. In particular, the crisis of the depletion of fossil energy resources in the near future has accelerated the renewable energy technologies. Among the renewable energy resources, oceans covering almost three-fourths of earth's surface have an enormous amount of energy. For this reason, various approaches have been made to harness the tremendous energy potential. In order to achieve two purposes: to improve harbor water quality and to use wave energy, this study proposed a sea water exchange structure applying an Oscillating Water Column (OWC) wave generation system that utilizes the air flow velocity induced by the vertical motion of water column in the air chamber as a driving force of turbine. In particular, the airflow velocity in the air chamber was estimated from the time variations of water surface profile computed by using 3D-NIT model based on the 3-dimensional irregular numerical wave tank. The relationship of the frequency spectrums between the computed airflow velocities and the incident waves was analyzed. This study also discussed the characteristics of frequency spectrums in the air chamber according to the presence of the structure, wave deformations by the structure, and the power of the water and air flows were also investigated. It is found that the phase difference exists in the time series data of water level fluctuations and air flow in the air chamber and the air flow power is superior to the fluid flow power.

Customer participatory design for mass customization(Focused on development of interactive design toolkit) (매스커스터마이제이션을 위한 소비자 참여 디자인 방법(인터랙티브 디자인 툴킷의 개발을 중심으로))

  • 변재형
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.5-14
    • /
    • 2003
  • This study suggest the development and application of the Interactive Design Toolkit as a participatory design method for general customer who are non-expert on design activity to participate in design process of mass customization. In order to let general customers to express their design needs, we have to make a familiar and direct communication method for them. And, customer's design needs should be transformed into digital media. This study define the Interactive Design Toolkit as a design tool for customer participation by direct manipulation of computer system for simulation of design needs by customer themselves. The Interactive Design Toolkit is based on a PC-based image perception system and its application. User can make virtual models in virtual space by manipulating physical objects in real world. And, The toolkit can be used in the field of participatory design for deliverer side customization, especially in system kitchen which is manufactured and distributed in modular system. More improved design toolkit for manipulating 3 dimensional shape is needed for consumer product design and car styling.

  • PDF

Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib (횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.493-500
    • /
    • 2004
  • In this study, the effects of ring stiffeners for buckling of cylindrical shells with composite materials were analyzed. The finite element method was used: 3-D beam elements were used for stiffeners and flat shell elements were used for cylindrical shells and were improved by introducing a substitute shear strain. The ring stiffeners were of the transverse rib type. The buckling behaviors of the cylindrical shells were analyzed based on various parameters, such as locations and sizes of stiffeners, diameter/length ratios and boundary conditions of shells, and fiber-reinforced angles. Effective reinforcement was examined by understanding the exact behaviors for buckling. The results of the analysis may serve as references for designs and future investigations.

Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum (붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo;Han, Kyu Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the behavior of column-removed double-span beams in welded steel moment frames and proposes a simplified nonlinear dynamic analysis method for the preliminary evaluation of progressive collapse potential. The nonlinear finite element analysis and the associated analytical study showed that the column gravity load and the beam span-to-depth ratio govern the maximum dynamic deformation demand of the double-span beams. Based on these results, the concept of a collapse spectrum, which describes the relationship between the gravity load parameter and the maximum chord rotation of the double-span beams, was newly proposed. A procedure for the application of the collapse spectrum to multi-story welded steel moment frames was then suggested. The inelastic dynamic finite element analysis results showed that the proposed method gives satisfactory prediction of the nonlinear progressive collapse behavior of welded steel moment frames.

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.