• Title/Summary/Keyword: 3차원 레이저 각인

Search Result 77, Processing Time 0.026 seconds

Planar measurements of OH and $O_{2}$ number density in premixed $C_{3}$H$_{8}$O$_{2}$ flame using laser induced pre-dissociative fluorescence (레이저 유도 선해리 형광법(LIPE)을 이용한 화염내 OH 및 $O_{2}$ 분자의 2차원 농도 분포 측정)

  • Jin, Seong-Ho;Nam, Gi-Jung;Kim, Hoi-San;Chang, Nae-Kak;Park, Seung-Han;Kim, Ung;Park, Kyoung-Suk;Shim, Kyoung-Hoon;Kim, Gyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4044-4052
    • /
    • 1996
  • Planar images of OH and $O_{2}$ with tunable KrF excimer laser which has a) 0.5 $cm^{-1}$ / linewidth, b) 0.5 nm tuning range, c) 150 mJ pulse energy, and d) 20 ns pulse width are obtained to determine spatial distributions of OH and $O_{2}$ in premixed $C_{3}$H$_{8}$ /O$_{2}$ flame. The technique is based on planar laser induced pre-dissociative fluorescence(PLIPF) in which collisional quenching is almost avoided because of the fast pre-dissociation. Dispersed LIPF spectra of OH and $O_{2}$ are also measured in a flame in order to confirm the excitation of single vibronic state of OH and $O_{2}$, OH and $O_{2}$ are excited on the P$_{2}$(8) line of the $A^{2}$.SIGMA.$^{+}$(v'= 3)-X$^{2}$.PI.(v'||'||'&'||'||'quot;= 0) band and R(17) line of the Schumann-Runge band B$^{3}$.SIGMA.$_{u}$ $^{[-10]}$ (v'= 0)- X$^{3}$.SIGMA.$_{g}$ $^{[-10]}$ (v'||'||'&'||'||'quot;= 6), respectively. Dispersed OH and $O_{2}$ spectra show an excellent agreement with simulated spectrum and previous works done by other group respectively. It is confirmed that OH widely distributed around flame front area than $O_{2}$.

Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR (UAS와 지상 LiDAR 조합에 의한 수직 구조물의 3차원 공간정보 구축)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • Recently, as a part of the production of spatial information by smart cities, three-dimensional reproduction of structures for reverse engineering has been attracting attention. In particular, terrestrial LiDAR is mainly used for 3D reproduction of structures, and 3D reproduction research by UAS has been actively conducted. However, both technologies produce blind spots due to the shooting angle. This study deals with vertical structures. 3D model implemented through SfM-based image analysis technology using UAS and reproducibility and effectiveness of 3D models by terrestrial LiDAR-based laser scanning are examined. In addition, two 3D models are merged and reviewed to complement the blind spot. For this purpose, UAS based image is acquired for artificial rock wall, VCP and check point are set through GNSS equipment and total station, and 3D model of structure is reproduced by using SfM based image analysis technology. In addition, Through 3D LiDAR scanning, the 3D point cloud of the structure was acquired, and the accuracy of reproduction and completeness of the 3D model based on the checkpoint were compared and reviewed with the UAS-based image analysis results. In particular, accuracy and realistic reproducibility were verified through a combination of point cloud constructed from UAS and terrestrial LiDAR. The results show that UAS - based image analysis is superior in accuracy and 3D model completeness and It is confirmed that accuracy improves with the combination of two methods. As a result of this study, it is expected that UAS and terrestrial LiDAR laser scanning combination can complement and reproduce precise three-dimensional model of vertical structure, so it can be effectively used for spatial information construction, safety diagnosis and maintenance management.

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

3D Image Analysis for Digital Restoration and Structural Stability Evaluation of Stone Cultural Heritage: Five-storied Magoksa Temple Stone Pagoda (석조문화재 디지털복원 및 구조안정성 평가를 위한 3차원 영상분석: 마곡사오층석탑)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2009
  • This study was focused on digital restoration and structural stability evaluation applying 3D scanning system of five-storied Magoksa temple stone pagoda in Gongju. For these, the digital restoration of the pagoda was completed using laser scan data which is measured 16 directions and data processing program of 7 stages. As a result of digital restoration, the overall height and width of stone properties showed a little difference in directions and the width of roof stones appeared very high difference of each floor. The width of pagoda body become smaller to the fifth floor, but gradual decrease rate showed irregular characteristics. Also, as result of 3D image analysis for structural stability evaluation, the displacement occurred toward northwest in second body stone to upper final stone except for central axis of the first body stone which inclines toward southwest. Such 3D image analysis is required quantification of survey method and should be applied to various field such as quantitative damage maps in order to utilize a conservation of stone cultural heritages, continuously.

  • PDF

A Study on the 3D Measurement Data Application: The Detailed Restoration Modeling of Mireuksajiseoktap (미륵사지석탑 정밀복원모형 제작을 중심으로 한 3차원 실측데이터의 활용 연구)

  • Moon, Seang Hyen
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.76-95
    • /
    • 2011
  • After dismantled, Mireuksajiseoktap(Stone pagoda of Mireuksa Templesite) is being in the stage of restoration design. Now, different ways - producing restoration model, a 3 dimension simulation - have been requested to make more detailed and clearer restoration design prior to confirmation of its restoration design and actual restoration carry-out. This thesis proposes the way to build the detailed model for better restoration plan using extensively-used Reverse Engineering technique and Rapid Prototyping. It also introduces each stage such as a 3-dimension actual measurement, building database, a 3-dimension simulation etc., to build a desirable model. On the top of that, this thesis reveals that after dismantled, MIruksaji stone pagoda's interior and exterior were not constructed into pieces but wholeness, so that its looks can be grasped in more virtually and clearly. Secondly, this thesis makes a 3-dimension study on the 2-dimension design possible by acquiring basic materials about a 3-dimension design. Thirdly, the individual feature of each member like the change of member location can be comprehended, considering comparing analysis and joint condition of member. Lastly, in the structural perspective this thesis can be used as reference materials for structure reinforcement design by grasping destructed aspects of stone pagoda and weak points of the structure. In dismantlement-repair and restoration work of cultural properties that require delicate attention and exactness, there may be evitable errors on time and space in building reinforcement and restoration design based on a 2-dimension plan. Especially, the more complicate and bigger the subject is, the more difficult an analysis about the status quo and its delicate design are. A series of pre-review, based on the 3-dimension data according to actual measurement, can be one of the effective way to minimize the possibility that errors about time - space happen by building more delicate plan and resolving difficulties.

The Basic Study of Position Recognition Cow-teats Used Scanning Range Finder (레이저스캔 센서를 이용한 유두위치인식에 관한 기초연구)

  • Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study was conducted to verify the applicability of robot milking system through acquisition and analysis of model teat's position information using scanning range finder (SRF). Model teats, same size and shape as real teats, were designed to analyze the properties according to the material, distance error and angle error of the sensor. In addition, 2-dimensional distance information of each teats was obtained at same time with 4 teat models and the result were as follows. 1. In the case of the fingers on the experiment for selection of materials for teat model, the distance error was from 4.3 mm to 1.3 mm, average was 2.8 mm as a minimum record. In the case of rubber material, average distance error was 4.3 mm. So, this material was considered to be a most suitable model. 2. The distance error was maximum at 100 mm distance. The more distance increased, the less error increased up to 300 mm. Then the error increased after 300 mm and decreased again. 3. The maximum angle error of 10.1 mm was measured at $170^{\circ}$, in case of $70^{\circ}$ the error was 0.2 mm as a minimum value. There was no specific tendency to error of angle. 4. In the 2-dimensional location error for 4 teat models, distance error was 3.8 mm as minimum and 7.2 mm as maximum. The angle error was $1.2^{\circ}$ as maximum. All of errors were included within the accuracy of sensor, the robot milking system was considered to be applicable to measure the distance of teats due to the measuring velocity of SRF and the hole size of teat-cup.

Development of Signal Processing Technique of Digital Speckle Tomography for Analysis of Three-Dimensional Density Distributions of Unsteady and Asymmetric Gas Flow (비정상 비대칭 기체 유동의 3차원 밀도 분포 분석을 위한 디지털 스펙클 토모그래피 기법의 신호 처리 기술 개발)

  • Baek, Seung-Hwan;Kim, Yong-Jae;Ko, Han-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2006
  • Transient and asymmetric density distributions of butane flow have been investigated from laser image signals by developed three-dimensional digital speckle tomography. Moved signals of speckles have been captured by multiple CCD images in three angles of view simultaneously because the flows were asymmetric and transient. The signals of speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays fur density gradients. The three-dimensional density fields have been reconstructed from the fringe shift signal which is integrated from the deflection angle by a real-time multiplicative algebraic reconstruction technique (MART).

Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology (디스플레이 융합 기술 개발을 위한 32 × 32 광양자테 레이저 어레이의 특성)

  • Lee, Jongpil;Kim, Moojin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.161-167
    • /
    • 2017
  • We have fabricated and characterized $32{\times}32$ photonic quantum ring (PQR) laser arrays uniformly operable with $0.98{\mu}A$ per ring at room temperature. The typical threshold current, threshold current density, and threshold voltage are 20 mA, $0.068A/cm^2$, and 1.38 V. The top surface emitting PQR array contains GaAs multiquantum well active regions and exhibits uniform characteristics for a chip of $1.65{\times}1.65mm^2$. The peak power wavelength is $858.8{\pm}0.35nm$, the relative intensity is $0.3{\pm}0.2$, and the linewidth is $0.2{\pm}0.07nm$. We also report the wavelength division multiplexing system experiment using angle-dependent blue shift characteristics of this laser array. This photonic quantum ring laser has angle-dependent multiple-wavelength radial emission characteristics over about 10 nm tuning range generated from array devices. The array exhibits a free space detection as far as 6 m with a function of the distance.

Waveform Simulation of Full-Waveform LIDAR (풀웨이브폼 라이다의 반사파형 시뮬레이션)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • The LIDAR data can be efficiently utilized for automatic reconstruction of 3D models of objects on the terrain and the terrain itself. In this paper, we attempted to generate simulated waveforms of FW (Full-Waveform) LIDAR (LIght Detection And Ranging). We performed the geometric modeling of the sensor and objects, and the radiometric modeling of the waveform intensity. First, we compute the origins and directions of the sub-beams by considering the divergence effects of a laser beam. We then searched for the locations at which the sub-beams intersected with the objects, such as ground, buildings and trees. Finally, we generate the individual waveforms of the reflected sub-beams and the waveform of the entire beam by summing the individual ones. With the experimental results, we confirmed the waveforms were reasonably generated, showing the characteristics of the surfaces the beam interacted with.

Influence of the angles and number of scans on the accuracy of 3D laser scanning (3 차원 레이저 스캔영상 채득 시 스캔각도와 횟수에 따른 정확도)

  • Lee, Kyung-Min;Song, Hyo-Young;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.41 no.2
    • /
    • pp.76-86
    • /
    • 2011
  • Objective: To investigate whether the accuracy of 3D laser scanning is influenced by the angles and number of scans. Methods: Using a 3D laser scanner, 10 manikins with facial markers were scanned at 7 horizontal angles (front view and at $20^{\circ}$, $45^{\circ}$, and $60^{\circ}$ angles on the right and left sides). Three-dimensional facial images were reconstructed by 6 methods differing in the number and angles of scans, and measurements of these images were compared to the physical measurements from the manikins. Results: The laser scan images were magnified by 0.14 - 0.26%. For images reconstructed by merging 2 scans, excluding the front view; and by merging 3 scans, including the front view and scans obtained at $20^{\circ}$ on both sides; several measurements were significantly different than the physical measurements. However, for images reconstructed by merging 3 scans, including the front view; and 5 scans, including the front view and scans obtained at $20^{\circ}$ and $60^{\circ}$ on both sides; only 1 measurement was significantly different. Conclusions: These results suggest that the number and angle of scans influence the accuracy of 3D laser scanning. A minimum of 3 scans, including the front view and scans obtained at more than $45^{\circ}$ on both sides, should be integrated to obtain accurate 3D facial images.