본 논문에서는 볼륨데이타에서의 레이블링(labeling)을 위한 알고리즘을 제안하고자한다. 3차원 볼륨은 2차원 슬라이스 데이타의 연속으로 보고 각 슬라이스의 레이블링 정보를 바탕으로 하는 SIL(Slice Information based Labeling)방법을 제안한다. 이는 기존의 알고리즘에 비해 효율적인 메모리 사용이 가능하고 분석하고자 하는 데이타의 특성에 맞는 2차원 레이블링과의 조합이 가능한 장점이 있다. 기존 알고리즘과 제안하는 방법을 3차원 세포영상에서 비교하여 보았으며, SIL을 2차원 레이블링 CCCL(Contour based Connected Component Labeling)과 함께 볼륨데이타에 적용하여 본 결과 기존의 알고리즘 보다 약 2배 빠른 성능을 보였다. 다양한 3차원 레이블링 방법 중 적용되는 영상에 따라 각기 다른 결과를 얻었지만, 3차원 세포영상의 분석에서는 SIL 방법이 우수하다는 결론을 얻었다.
볼륨데이터에서 관심대상의 특징을 추출하기 위해서 3D레이블링을 3차원 세포영상의 분석에 적합한 레이블링 방법인 SIL(slice Information base labeling)을 제안하였다. SIL은 각 슬라이스 정보를 이용하여 레이블링을 수행하므로 영상의 특징에 안는 레이블링으로의 확장이 유용하고 메모리 효율이 높다. 몇 개의 실험 영상으로 다른 방법과 비교한 결과 성능면에서도 우수 결과를 얻었다. 또한 레이블링을 통해서 얻어진 피쳐값으로 세포 영상을 분석하였으며, 콘포컬 현미경 영상을 이용하였을때 실험영상에서 결과를 추출하는데 걸린 시간은 SIL방법이 기존 방법보다 2배 가량 빨랐다. 다양한 3차원 에이블링 방법 중 적용되는 영상에 따라 각기 다른 결과를 얻었지만,3차원 세포영상의 분석에는 SIL 방법이 우수하다는 결론을 얻었다.
본 연구에서는 자궁종양 세포를 정상, 비정상으로 진단하기 위한 세포핵의 특성값 추출 방법으로 3차원 형태학적 분석 방법을 제안한다. 컨포컬 현미경을 이용하여 3차원 볼륭데이터를 획득하고 3차원 연결 성분 레이블링을 적용하였다 레이블링 후, 각각의 세포핵으로부터 3차원 형태학적 특성값을 추출하였으며 정상세포핵과 비정상세포핵의 3차원 형태계측에 대한 차이를 비교하였다. 이는 잘린 단면의 각도나 두께에 따라 서로 다른 분석 결과를 나타내는 2차원 영상분석방법의 한계를 극복할 수 있으며 실체에 가까운 계측으로 보다 객관적이고 정확한 병리진단을 위한 보조도구로써 활용될 수 있다.
본 논문은 2차 다항식을 이용하여 3차원 물체의 표면 특징을 추출하고 표현하는 방법을 제안한다. 본 연구는 수정된 스캔 라인 기법을 이용하여 에지 맵을 얻는다. 에지 맵으로부터 3차원 물체의 각 면들을 분리하기 위해 레이블링 연산을 하고 각 면에서 중심점과 모서리 점들을 추출한다. 그 다음에, 평면 방정식으로부터 각 면이 평면인지 곡면인지를 판단한다. 3차원 물체를 표현하기 위해 각 면의 평면 또는 곡면의 계수 및 특징들을 추출한다. 합성영상과 실측영상을 통해서 제안된 기법의 성능을 알아보았고, 또한 제안된 기법으로 3차원 물체를 재구성하였다.
본 논문에서는 폐 영상에서 폐 혈관을 분할하고 정제하는 방법을 제안하였다. 제안된 방법은 다음과 같이 다섯 단계로 구성된다. 첫 번째, 폐 영상에서 히스토그램 변화율의 다항식 회귀 분석을 사용하여 임계값을 계산한다. 두 번째, 계산된 임계값으로 밝기값 기반 분할 방법을 사용하여 폐 혈관을 분할한다. 세 번째, 분할한 폐 혈관 영상에 2차원 연결 요소 레이블링 방법을 사용하고, 레이블링 요소의 크기와 이심률을 계산하여 좌측 및 우측 횡격막의 씨앗점을 결정한다. 네 번째, 결정된 씨앗점에서 3차원 영역 성장법을 사용하여 횡격막을 추출한다. 다섯 번째, 이진 영상의 3차원 연결 요소 레이블링 방법을 사용하여 폐 혈관 영상의 노이즈를 제거한다.
본 논문에서는 햅틱 인터랙션 기반의 3차원 가상 얼굴 메이크업 시뮬레이션에서 메이크업 대상에 대한 정교한 페인팅을 적용하기 위한 자동화된 마스크 생성 방법을 개발한다. 본 연구에서는 메이크업 시뮬레이션 이전의 전처리 과정에서 마스크를 생성한다. 우선, 3차원 스캐너 장치로부터 사용자의 얼굴 텍스쳐 이미지와 3차원 기하 표면 모델을 획득한다. 획득된 얼굴 텍스쳐 이미지로부터 AdaBoost 알고리즘, Canny 경계선 검출 방법과 색 모델 변환 방법 등의 영상처리 알고리즘들을 적용하여 마스크 대상이 되는 주요 특정 영역(눈, 입술)들을 결정하고 얼굴 이미지로부터 2차원 마스크 영역을 결정한다. 이렇게 생성된 마스크 영역 이미지는 3차원 표면 기하 모델에 투영되어 최종적인 3차원 특징 영역의 마스크를 레이블링하는데 사용된다. 이러한 전처리 과정을 통하여 결정된 마스크는 햅틱 장치와 스테레오 디스플레이기반의 가상 인터페이스를 통해서 자연스러운 메이크업 시뮬레이션을 수행하는데 사용된다. 본 연구에서 개발한 방법은 사용자에게 전처리 과정에서의 어떠한 개입 없이 자동적으로 메이크업 대상이 되는 마스크 영역을 결정하여 정교하고 손쉬운 메이크업 페인팅 인터페이스를 제공한다.
본 논문은 2차 다항식을 이용하여 3차원 물체의 표면 특징을 추출하고 표현하는 방법을 제안한다. 우리는 수정된 스캔 라인 기법을 이용하여 에지 맵을 얻는다. 에지 맵으로부터 3차원 물체의 각 면들을 분리하기 위해 레이블링 연산을 하고 각 면에서 중심점과 모서리 점들을 추출한다. 그 다음에, 평면 방정식으로부터 각 면이 평면인지 곡면인지를 판단하고, 3차원 물체를 표현하기 위해 각 면의 평면 또는 곡면의 계수 및 특징들을 추출한다. 그리고 합성영상과 실측영상을 통해서 제안된 기법의 성능을 알아보았다.
흉부 CT 영상에서 폐 질환의 진단을 위해서 폐 분할, 폐혈관 분할과 폐 질환 부위에 대한 괴사 세포 비율의 수치적 계산을 제안 하였다. 첫 번째 단계는 흉부 CT 영상에서 3차원 레이블링 기법과 3차원 영역 성장법을 적용하여 폐와 기관지를 분리한다. 두 번째 단계는 폐혈관 분할은 1차 다항식 회귀(Polynomial Regression)를 사용한 변화율을 적용하여 분할한 다음, 잡음 제거를 실시하여 최종의 폐혈관을 분할한다. 세 번째 단계는 2단계 이미지 에서 질환 예상 인자를 발견하고, 괴사 세포의 비율을 계산하는 것이다. 질환 예상인자는 폐에 대해서 3차원 레이블링 기법을 적용하였고, 각 레이블 중심 값을 관측하여 변화가 없는 레이블을 찾는다. 이렇게 찾은 질환 예상 인자는 조영제 투입 전/후 영상을 정합한 뒤, 면적을 비교하면 폐의 괴사 세포 비율을 계산할 수 있다.
갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.
In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.