• Title/Summary/Keyword: 3계층 핸드오프

Search Result 24, Processing Time 0.02 seconds

(Performance Analysis of Channel Allocation Schemes Allowing Multimedia Call Overflows in Hierarchical Cellular Systems) (계층셀 시스템 환경에서 멀티미디어 호의 오버플로우를 허용한 채널할당기법 성능분석)

  • 이상희;임재성
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.316-328
    • /
    • 2003
  • In this paper, we propose and analyze two adaptive channel allocation schemes for supporting multimedia traffics in hierarchical cellular systems. It is guaranteed to satisfy the required quality of service of multimedia traffics according to their characteristics such as a mobile velocity for voice calls and a delay tolerance for multimedia calls. In the scheme 1, only slow-speed voice calls are allowed to overflow from macrocell to microcell and only adaptive multimedia calls can overflow from microcell to macrocell after reducing its bandwidth to the minimum channel bandwidth. In the scheme II, in addition to the first scheme, non-adaptive multimedia calls can occupy the required channel bandwidth through reducing the channel bandwidth of adaptive multimedia calls. The proposed scheme I is analyzed using 2-dimensional Markov model. Through computer simulations, the analysis model and the proposed schemes are compared with the fixed system and two previous studies. In the simulation result, it is shown that the proposed schemes yield a significant improvement in terms of the forced termination probability of handoff calls and the efficiency of channel usage.

The Stateless Care of Address Configuration Scheme To Provide an Efficient Internet Service in a Train (철도차량내의 효율적인 인터넷 서비스를 위한 Stateless 기반의 Care of Address 구성방안)

  • Lee, Il-Ho;Lee, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.37-46
    • /
    • 2009
  • The movement of the MR loaded on the train is confined to the bidirectional movement along the rail. Therefore, the AR connected to the MR can use the address information of the neighboring ARs and configure CoA in advance before performing L2 and L3 handoff. The MR can acquire new CoA immediately from the present AR after the movement detection procedure. The performance analysis shows that the proposed scheme can provide CoA to the MR about 1.8(s) at minimum and 4.98(s) at maximum faster than the Stateless scheme because the proposed scheme does not carry out any additional CoA and DAD procedure unlike the Stateless scheme.

Analytical Approach of Global Mobility Support Schemes in IP-based Heterogeneous Mobile Networks (IP기반 이종 모바일 네트워크에서 글로벌 이동성 지원기법의 분석적 접근법)

  • Won, Younghoon;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.205-218
    • /
    • 2012
  • Mobility management of the mobile nodes and provision of seamless handover is crucial to an efficient support for the global roaming of the mobile nodes in next-generation wireless networks. Mobile IPv6 and mobility management in extended IP layer, which highly depend on traffic characteristics and user mobility models, were proposed by the IETF. Therefore, to evaluate the in-depth performance about these factors is important. Generally, the performance of IPv6-based mobility management protocol is evaluated through simulation. This paper shows the correlation between network parameters and performance metrics through numerical results, which is investigated how influence handoff latency and packet loss. And this paper uses mathematical analysis of the system parameters, such as the subnet residence time, the packet arrival rate and delay in wireless connection through the analytical framework which evaluate the performance of IPv6-based mobility management protocol.

(An HTTP-Based Application Layer Security Protocol for Wireless Internet Services) (무선 인터넷 서비스를 위한 HTTP 기반의 응용 계층 보안 프로토콜)

  • 이동근;김기조;임경식
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.377-386
    • /
    • 2003
  • In this paper, we present an application layer protocol to support secure wireless Internet services, called Application Layer Security(ALS). The drawbacks of the two traditional approaches to secure wireless applications motivated the development of ALS. One is that in the conventional application-specific security protocol such as Secure HyperText Transfer Protocol(S-HTTP), security mechanism is included in the application itself. This gives a disadvantage that the security services are available only to that particular application. The other is that a separate protocol layer is inserted between the application and transport layers, as in the Secure Sockets Layer(SSL)/Transport Layer Security(TLS). In this case, all channel data are encrypted regardless of the specific application's requirements, resulting in much waste of network resources. To overcome these problems, ALS is proposed to be implemented on top of HTTP so that it is independent of the various transport layer protocols, and provides a common security interface with security applications so that it greatly improves the portability of security applications. In addition, since ALS takes advantages of well-known TLS mechanism, it eliminates the danger of malicious attack and provides applications with various security services such as authentication, confidentiality integrity and digital signature, and partial encryption. We conclude this paper with an example of applying ALS to the solution of end-to-end security in a present commercial wireless protocol stack, Wireless Application Protocol.