• Title/Summary/Keyword: 3가 비소

Search Result 151, Processing Time 0.033 seconds

Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone (제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구)

  • Lee, Min-Hee;Jeon, Ji-Hye
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.

As(III) Oxidation and Phenol Adsorption by the Activated Carbon Impregnated with Mn Oxide (망간산화물이 첨착된 활성탄에 의한 페놀흡착 및 비소(III) 산화)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Application of manganese-impregnated activated carbon(Mn-AC) in the treatment of synthetic wastewater containing both organic and inorganic contaminants was investigated. Phenol and As(III) was used as representative organic and inorganic contaminants, respectively. When the stability of Mn-AC at acidic condition was evaluated with variation of solution pH ranging from 2 to 4, Mn-AC was unstable below pH 3, while negligible dissolution of Mn was observed above pH 4. This stability test suggests a plausible applicability of Mn-AC in the treatment of wastewater above pH 4. Compared to AC-alone, the adsorption rates of phenol as well as adsorbed amounts of phenol by Mn-AC were slightly decreased due to the decrease of the surface area by impregnation. The maximum adsorbed amount of phenol by Mn-AC was corresponds to 75% of that by AC-alone from the adsorption isotherm study. The oxidation efficiency of As(III) by Mn-AC was greater than that by AC-alone at lower pHs while reverse trend was observed as pH increased above 7. From this work, it was found that Mn-AC could be used in the simultaneous treatment of both phenol and As(III).

Behavior of Oxidative Precipitation of High-Arsenic (III) Solution Utilizing Activated Carbon with Air Injection (공기와 활성탄 병용에 의한 용액 중 고농도 3가 비소의 산화-침전 거동 연구)

  • Kim, Rina;Kim, Gahee;Kim, Kwanho;You, Kwang-suk
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • Arsenic (As) oxidation followed by precipitation from a high-As(III)-containing leaching solution derived from a sulfidic ore was investigated in this study to remove aqueous As from the solution using activated carbon (AC) with air injection as an oxidant. To obtain the initial leaching solution, a domestic sulfidic ore was leached in a sulfuric acid solution at pH 1 and 50℃ for 95 h, and approximately 7 g/L of Fe and 3 g/L of As were leached out. To determine the effect of the oxidative reaction utilizing AC with air injection, the leaching solution was tested under the following five oxidative conditions at an initial pH of 1 and 90℃ for 72 h: air-only injection; air injection with 1, 5, and 10 w/v% of AC addition; and H2O2 addition. The tests in the presence of both air and AC revealed that the oxidation kinetics and As removal were improved by the reaction between the metallic species and the surface group formed on the AC surface. In addition, the greater the amount of AC added, the better was the reaction efficiency, removing 93-94% of As with more than 5 w/v% of AC addition. Finally, X-ray diffraction analysis confirmed that the precipitate formed from the oxidative reaction was scorodite (FeAsO4·2H2O).

'위대한 영웅' '작은 행복' 갈망했던 한해

  • Park, Cheon-Hong
    • The Korean Publising Journal, Monthly
    • /
    • s.226
    • /
    • pp.2-3
    • /
    • 1997
  • 어수선한 난국에서 사람들은 영웅을 필요로 했고, 한편으로 거대한 것에 감춰진 일상의 감동을 요청했다. 소설에서 "람세스", 비소설에서 "마음을 열어주는 101가지 이야기"가 이러한 심리기제의 최대 수혜자였다.

  • PDF

Monitoring of arsenic and arsenic species in fish collagen in Korea (국내 유통 어류 콜라겐의 총비소 및 비소화학종 함량 모니터링)

  • Yeo-Jae Shin;Mi-Ra Jang;Eun-Hee Kim;Yun-Hee Kim;Min-Jung Kim;Min-Jung Kim;Jae-Hoon Cha;Mi-Hyun Choi;Seok-Ju Cho;In-Sook Hwang;Yong-Seung Shin
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.135-142
    • /
    • 2023
  • The total arsenic and 6 arsenic species were investigated in 56 fish collagen products using ICP-MS (Inductively coupled plasma-mass spectrometer) and HPLC-ICP-MS(High performance liquid chromatography-Inductively coupled plasma-mass spectrometer). The mean concentrations of total arsenic and arsenic species were 40.103±81.133 ㎍/kg (N.D.~586.686) and 30.070±50.378 ㎍/kg (N.D.~313.871), respectively. The mean concentration of inorganic arsenic was 24.610±32.706 ㎍/kg (N.D.~129.331), and the As(V) (Arsenate) was the most dominant. The standards and specifications of arsenic have not been established for fish collagen products. Our study presents that arsenic levels are relatively safe compared with not only previous studies but also domestic and international standards. However, in one sample, the total arsenic concentration was 586.686 ㎍/kg, showing the inorganic was 8.119 ㎍/kg, and the DMA was 305.752 ㎍/kg, which was high than the Canadian standard for organic arsenic. In conclusion, it is necessary to monitor arsenic levels consistently and establish standards and specifications of arsenic in fish collagen products to assure consumer safety.

Geochemical Investigation on Arsenic Contamination in the Alluvial Ground-water of Mankyeong River Watershed (만경강유역 충적대수층 지하수의 비소오염현황 및 지구화학적 특성)

  • Moon, Jeong-Tae;Kim, Kang-Joo;Kim, Seok-Hwi;Jeong, Cheon-Sung;Hwang, Gab-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.673-683
    • /
    • 2008
  • As-rich alluvial groundwaters occurring in the agricultural area of Mankyeong River watershed were geochemically studied. 15 out of 29 investigated wells (52%) showed As levels exceeding the WHO drinking water standard ($10{\mu}g/L$). Their chemistry is characterized by low Eh levels, low $NO_3$ and $SO_4$ concentrations, and high pH, alkalinity, Fe, $NH_4$, and $PO_4$ levels. This suggests that arsenic is enriched by the reductive dissolution of As-bearing Fe-/Mn-(hydro)oxides, the commonest process in Bangladesh and West Bengal of India, of which groundwaters are severely contaminated by As. It was also revealed that As concentrations in the area are strongly regulated by the presence of agrochemicals such as $NO_3$ and $SO_4$.

Trends of Arsenic Maximum Levels on Agricultural Commodities and Processed Agricultural Products (농산물 및 농산가공품 중 비소 허용기준에 관한 국내외 동향)

  • Paik, Min-Kyoung;Kim, Won-Il;Yoo, Ji-Hyock;Kim, Jin-Kyoung;Kim, Mi-Jin;Im, Geon-Jae;Hong, Moo-Ki;Om, Ae-Son
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Although concerns about Arsenic (As) contamination in agricultural foods have currently increased, there in on adequate international risk management standards for As particularly on agricultural commodities and processed agricultural products. This scenario holds true also in Korea. Australia, and New Zealand has determined the As maximum level (ML) but only on cereals grains which is based on total As contents. ln addition, Japan has regulated the ML based on trivalent As contents in agricultural commodities, which do not have legal restrictions. On the other hand, China has developed a systemic risk management to restrict the As contamination above MLs in agricultural commodities and processed agricultural products based on inorganic and total As contents. The establishment of an adequate analytical method for As specification in agricultural foods is essential to determine the acceptable level of As in agricultural food. Probabilistic approach may remove some uncertainties in calculating human risk assessment from As. It should be reviewed in terms of maximum levels to set the best scenario based on a realiability and availability to achieve effective As management on agricultural foods in Korea.

Comparison of the As(III) Oxidation Efficiency of the Manganese-coated Sand Prepared With Different Methods (망간코팅사 종류별 독성 3가 비소의 산화특성에 관한 비교 연구)

  • Kim, Byeong-Kwon;Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • In this study physicochemical characteristics and stability of various manganese coated sands (MCS) prepared with different methods were evaluated. In addition, removal efficiencies of As(III) by each MCS were compared. Four different MCSs were used; B-MCS prepared by baking method, W&D-MCS prepared by wetting and dry method, NMCS prepared during the water treatment process and Birm which is a commercial MCS widely used for the removal iron and manganese. The manganese content in each MCS was following order: Birm (63,120 mg/kg) > N-MCS (10,400 mg/kg) >W&D-MCS (5,080 mg/kg) > B-MCS (2,220 mg/kg). Birm showed the least solubility (% basis) in acidic conditions. As(III) oxidation efficiency of B-MCS was continuously increased as the solution pH decreased. While As(III) oxidation efficiency of N-MCS and Birm was minimum around neutral pH. The increased As(III) oxidation efficiency above neutral pH for N-MCS and Birm could be due to the competitive adsorption of $Mn^{2+}$, which was produced from reduction of $MnO_2$, onto the surface of aluminum and manganese oxides.

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.