DOI QR코드

DOI QR Code

Behavior of Oxidative Precipitation of High-Arsenic (III) Solution Utilizing Activated Carbon with Air Injection

공기와 활성탄 병용에 의한 용액 중 고농도 3가 비소의 산화-침전 거동 연구

  • Kim, Rina (Resources Recovery Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Gahee (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Kwanho (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • You, Kwang-suk (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 김리나 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 김가희 (한국지질자원연구원 DMR 융합연구단) ;
  • 김관호 (한국지질자원연구원 DMR 융합연구단) ;
  • 유광석 (한국지질자원연구원 DMR 융합연구단)
  • Received : 2021.04.01
  • Accepted : 2021.06.01
  • Published : 2021.08.31

Abstract

Arsenic (As) oxidation followed by precipitation from a high-As(III)-containing leaching solution derived from a sulfidic ore was investigated in this study to remove aqueous As from the solution using activated carbon (AC) with air injection as an oxidant. To obtain the initial leaching solution, a domestic sulfidic ore was leached in a sulfuric acid solution at pH 1 and 50℃ for 95 h, and approximately 7 g/L of Fe and 3 g/L of As were leached out. To determine the effect of the oxidative reaction utilizing AC with air injection, the leaching solution was tested under the following five oxidative conditions at an initial pH of 1 and 90℃ for 72 h: air-only injection; air injection with 1, 5, and 10 w/v% of AC addition; and H2O2 addition. The tests in the presence of both air and AC revealed that the oxidation kinetics and As removal were improved by the reaction between the metallic species and the surface group formed on the AC surface. In addition, the greater the amount of AC added, the better was the reaction efficiency, removing 93-94% of As with more than 5 w/v% of AC addition. Finally, X-ray diffraction analysis confirmed that the precipitate formed from the oxidative reaction was scorodite (FeAsO4·2H2O).

황화 광석으로부터 유래된 고농도 비소 함유 침출 용액에 대하여 공기와 활성탄 병용을 통해 비소를 산화 및 침전 제거하는 연구를 수행하였다. 침출 용액은 국내 황화 광석 시료를 pH 1, 50℃ 조건의 황산 용액에서 95시간동안 침출하여 제조하였으며, 침출 용액 내 금속이온 농도 분석 결과 Fe가 약 7 g/L, As가 약 3 g/L 함유된 것으로 측정되었다. 해당 용액에 대하여 공기와 활성탄 병용 시 비소의 산화 및 침전 효과를 파악하기 위해 5가지 산화 조건(공기 주입, 공기와 1, 5, 10 w/v% 활성탄 투입, H2O2 투입) 하에 초기 pH 1, 90℃에서 72시간 동안 산화 및 침전 실험을 수행하였다. 실험 결과 공기와 활성탄을 함께 투입한 경우 활성탄 표면에 생성된 작용기로 인해 산화 반응의 속도가 빠르고 비소 제거율이 향상되는 것으로 분석되었다. 또한, 활성탄의 투입량이 증가할수록 반응의 효율이 향상되었으며, 5 w/v% 이상의 활성탄 투입 시 약 93-94%의 비소가 제거된 것으로 분석되었다. 침전 생성물에 대한 XRD 분석 결과 산화 반응에 의해 스코로다이트(FeAsO4·2H2O)가 잘 생성된 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 2020년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 융합연구단 사업(No.CRC-15-06-KIGAM)의 지원을 받아 수행되었습니다. 또한, 한국지질자원연구원 기본사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013)' 과제의 일환으로 수행되었습니다.

References

  1. U.S. Geological Survey, 2020 : Mineral commodity summaries 2020, U.S. Geological Survey.
  2. Marsden, J.O., and House, C.I., 2006 : The Chemistry of Gold Extraction, 2nd Edition, SME, Co, USA.
  3. Rodriguez-Freire, L., Moore, S.E., Sierra-Alvarez, R., et al., 2016 : Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor, Biotechnology and Bioengineering, 113(3), pp.522-530. https://doi.org/10.1002/bit.25825
  4. Wu, C., Mahandra, H., Radzinski, R., et al., 2020 : Green catalytic process for in situ oxidation of Arsenic(III) in concentrated streams using activated carbon and oxygen gas, Chemosphere, 261, 127688. https://doi.org/10.1016/j.chemosphere.2020.127688
  5. Wu, C., Mahandra, H., Ghahreman, A., 2020 : Novel continuous column process for As(III) oxidation from concentrated acidic solutions with activated carbon catalysis, Industrial and Engineering Chemistry Research, 59, pp. 9882-9889. https://doi.org/10.1021/acs.iecr.0c00470
  6. Jain, C.K. and Ali, I., 2000 : Arsenic: Occurrence, toxicity and speciation techniques, Water Research, 34(17), pp.4304-4312. https://doi.org/10.1016/S0043-1354(00)00182-2
  7. Bissen, M. and Frimmel, F.H., 2003 : Arsenic - a Review. Part I : Occurrence, toxicity, speciation, mobility, Acta hydrochimica et hydrobiologica, 31(1), pp.9-18. https://doi.org/10.1002/aheh.200390025
  8. Nazari, A., Radzinski, R., Ghahreman, A., 2016 : Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174, pp. 258-281. https://doi.org/10.1016/j.hydromet.2016.10.011
  9. Filippou, D. and Demopoulos, G.P., 1997 : Arsenic immobilization by controlled scorodite precipitation, JOM, 49, pp.52-55. https://doi.org/10.1007/s11837-997-0034-3
  10. Ruonala, M., Leppinen, J., Miettinen, V., 2014 : US. 8790516B2.
  11. Choi, Y., Ghahremaninezhad, A., Ahern, N., 2014 : US. 20140356261A1.
  12. Fujita, T., Taguchi, R., Abumiya, M., et al., 2009 : Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions : Physical properties and stability of the scorodite, Hydrometallurgy, 96, pp.189-198. https://doi.org/10.1016/j.hydromet.2008.10.003
  13. Kim, G., Kim, R., You, K., et al., 2021 : Leaching behavior of heavy metals from an ore containing high concentration As utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Resources Recycling, 30(2), pp.14-23. https://doi.org/10.7844/KIRR.2021.30.2.14
  14. Lorenzen, L., van Deventer, J.S.J., Landi, W.M., 1995 : Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Minerals Engineering, 8(4-5), pp.557-569. https://doi.org/10.1016/0892-6875(95)00017-K
  15. Bluteau, M.-C. and Demopoulos, G.P., 2007 : The incongruent dissolution of scorodite - Solubility, kinetics and mechanism, Hydrometallurgy, 87, pp.163-177. https://doi.org/10.1016/j.hydromet.2007.03.003
  16. Zhu, X., Nordstrom, D.K., McCleskey, R.B., et al., 2019 : On the thermodynamics and kinetics of scorodite dissolution, Geochimical et Cosmochimica Acta, 265, pp.468-477. https://doi.org/10.1016/j.gca.2019.09.012