• Title/Summary/Keyword: 2nd harvested tea leaves

Search Result 2, Processing Time 0.014 seconds

Effect of Split-Application of Slow-Release Fertilizer on Yield and Quality of 2nd Harvested Tea Leaves (완효성 비료 분시방법에 따른 두물차의 수량 및 품질)

  • Park, Jang-Hyun;Kug, Yong-In;Choi, Hong-Kook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.3
    • /
    • pp.190-194
    • /
    • 2003
  • A field experiment was conducted to evaluate effect by split-application of slow-release fertilizer on the tea plant. The yield of the 2nd harvested tea leaves was not different to the slow-release fertilizer of two time split manuring had been doing Sep. or Mar. compared with the traditional manuring had been doing four time split manuring, but that of the slow-release fertilizer to one time split manuring in Sep. had decreased $12.5{\pm}1.5%$. In case of the 2nd harvested leave, the contents of chemical components related to quality such as total nitrogen, total amino acid were somewhat higher in the slow-release fertilizer (two time split manuring) than in the traditional manuring, but those of tannin, and caffeine were low, and those of chlorophyll, vitamin C, free sugar and theanine were not different to out of treatments. In scoring test, appearance and quality of green tea were more excellence in the two time split manuring compared with one time split manuring of slow-release fertilizer and with the traditional manuring (four time split manuring). Therefore, I thought that use of slow-release fertilizer be increased yield and quality of tea leaves, and improved efficiency nature of nitrogen, phosphate and potassium out of soil fertilizer components.

Effect of Nitrogen Levels on Yield and Quality of 2nd Harvested Tea(Camellia sinensis var. sinensis) (질소 비료 시용량에 따른 두물차(Camellia sinensis var. sinensis)의 수량 및 품질)

  • Park, Jang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.238-245
    • /
    • 1998
  • The reasonable level of nitrogen fertilizer is a key factor to reduce environmental contamination as well as to increase crop yield and quality. The treatments are $N=42kg\;10a^{-1}$, $N=48kg\;10a^{-1}$, $N=54kg\;10a^{-1}$. $N=60kg\;10a^{-1}$. $N=72kg\;10a^{-1}$ and $N=150kg\;10a^{-1}$. Analytical results of yield and quality of tea leaves harvested the second time are summarized as follows: The soil of experimental field was higher in organic matter($49.9g\;kg^{-1}$) and available phosphate($937mg\;kg^{-1}$) compared to the general field but lower in pH(5.07) compared to the general field. When the amount of nitrogen fertilizer application was raised, the yield of tea leaves, the content of nitrogen, total free amino acids, caffeine and chlorophyll increased: however, the yield of tea leaves increased to excessive levels. On the other hand, the increased level of nitrogen fertilizer did not show any difference in the contents of vitamin C and tannin. Eleven kinds of amino acids were isolated from second harvested leaves of tea where the content of theanine occupied over 50%, and content of $665{\sim}763mg\;100g^{-1}$. The contents of fatty acids and catechin did not show correlation with application level of nitrogen fertilizer. The content of fatty acid was produced $1,742{\sim}2,643mg\;100g^{-1}$, and content of catechin was produced 12.47~13.54%. In scoring test, $N=60kg\;10a^{-1}$ treatment was 0.5~6.0 point higher compared to other treatments. Consequently, $N=60kg\;10a^{-1}$ is considered to be the best level of nitrogen fertilizer in terms of decreased environmental contamination as well as to increase crop yield and quality.

  • PDF