• Title/Summary/Keyword: 2Wheel

Search Result 1,132, Processing Time 0.023 seconds

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Development of Animal Liquid Manure Field Spreader Suited to Small Scale Crop Production Farms (소규모영농에 적합한 가축분뇨액비살비살포기 개발)

  • Choe, K.J.;Oh, K.Y.;Ryu, B.K.;Lee, S.H.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.151-160
    • /
    • 2006
  • For even distribution of liquid manure in the field, a boom nozzle type spreader was designed and studied to determined its suitability for small scale crop production farms. Boom nozzle type spreader was compared in the impact triple nozzle and impact single nozzle type spreader. Spreading uniformity of the boom nozzle type liquid manure spreader showed 5.2% (C.V.) and impact single nozzle type spreader showed 6.9% (C.V.). The spreading uniformity of the impact triple nozzle type spreader was quite uneven, therefore, the spreader could be modified as twin nozzle for spreading in orchard farm. The wheel axle height adjustable type liquid manure spreader has higher the stability and it considered much useful on the hilly agricultural land.

  • PDF

Asset Localization in Wireless Sensor Networks

  • Jo, Jung-Hee;Kim, Kwang-Soo;Kim, Sun-Joong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.465-471
    • /
    • 2007
  • Many hospitals have been considering new technology such as wireless sensor network(WSN). The technology can be used to track the location of medical devices needed for inspections or repairs, and it can also be used to detect of a theft of an asset. In an asset-tracking system using WSN, acquiring the location of moving sensor nodes inherently introduces uncertainty in location determination. In fact, the sensor nodes attached to an asset are prone to failure from lack of energy or from physical destruction. Therefore, even if the asset is located within the predetermined area, the asset-tracking application could "misunderstand" that an asset has escaped from the area. This paper classifies the causes of such unexpected situations into the following five cases: 1) an asset has actually escaped from a predetermined area; 2) a sensor node was broken; 3) the battery for the sensor node was totally discharged; 4) an asset went into a shadow area; 5) a sensor node was stolen. We implemented and installed our asset-tracking system in a hospital and continuously monitored the status of assets such as ventilators, syringe pumps, wheel chairs and IV poles. Based on this real experience, we suggest how to differentiate each case of location uncertainty and propose possible solutions to prevent them.

A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener (일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup;Yoo, Eun;Kim, Jin-Young;Hong, Sung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

FIELD CONTROL MACHINE IN THE RECYCLED VINYL RAIL

  • I. J. Jang;S. S. Do;Park, Y. W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.722-728
    • /
    • 2000
  • This study of field control machine in the recycled vinyl rail is gantry crane type and promoting agricultural automatization through self-controlled spraying, harvesting and conveyance. In addition to, that control machine could get a cost and labor reduction effect through automatization and make better environment by preventing farmers from agrichemical damage, accidents and recycling wasted vinyl. That machine is able to be divided as traveling, spraying, harvesting and conveyance sections. In driving section consists of girder frame, carrier, rail, control system, driving system, working machine, rail and loading device for working machine. This machine has following advantages to be able to bring a big innovation in the agricultural industry. I) Accurate performance is able to be done by proper positioning due to based on the rails. 2) The soil is not made hard like heavy tractor 3) The wheel is not sank into the soil and slipped well under rain like heavy tractor. Therefore, weather and soil situation could not affect working condition. 4) Complete unmanned control and 24hours-working are available due to traveling on the rails. 5) It could use various energy resources like not only liquid fuel but also solar, common electronic power due to traveling on the rails.

  • PDF

Vibration analysis of train-bridge system with a damaged pier by flotilla collision and running safety of high-speed train

  • Xia, Chaoyi;Wang, Kunpeng;Huang, Jiacheng;Xia, He;Qi, Lin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • The dynamic responses of a pier-pile-soil system subjected to a barge/flotilla collision are analyzed. A coupled high-speed train and bridge system with a damaged pier after barge/flotilla collision is established by taking the additional unevenness of the track induced by the damaged pier as the self-excitation of the system. The whole process of a CRH2 high-speed train running on the 6×32 m simply-supported PC (prestressed concrete) box-girder bridge with a damaged pier is simulated as a case study. The results show that the lateral displacements and accelerations of the bridge with a damaged pier are much greater than the ones before the collision. The running safety indices of the train increase with the train speed as well as with the number of barges in the flotilla. In flotilla collision, the lateral wheel/rail forces of the train exceed the allowable values at a certain speed, which influences the running safety of the trains.

Analysis of risk for high-speed trains caused by crosswind in subgrade settlement zones based on CFD-FE coupling

  • Qian Zhang;Xiaopei Cai;Tao Wang;Yanrong Zhang;Shusheng Yang
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.275-287
    • /
    • 2023
  • Subgrade differential settlement of high-speed railways was a pivotal issue that could increase the risk of trains operation. The risk will be further increased when trains in the subsidence zone are affected by crosswinds. In this paper, the computational fluid dynamics (CFD) model and finite element (FE) model were established, and the data transmission interface of the two models was established by fluid-solid interaction (FSI) method to form a systematic crosswind-train-track-subgrade dynamic model. The risk of high-speed train encountering crosswind in settlement area was analyzed. The results showed that the aerodynamic force of the trains increased significantly with the increase in crosswind speed. The aerodynamic force of the trains could reach 125.14 kN, significantly increasing the risk of derailment and overturning. Considering the influence of crosswind, the risk of train operation could be greatly increased. The safety indices and the wheel-rail force both increased with the increase of the wind speed. For the high-speed train running at 350 km/h, the warning value of wind speed was 10.2 m /s under the condition of subgrade settlement with wavelength of 20 m and amplitude of 15 mm.

Characterization of Aerosols Collected at a Subway Station Platform Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z particle EPMA 단일입자 분석법을 이용한 지하철 승강장에서 미세입자 특성 분석)

  • Hwang HeeJin;Oh MiJung;Kang Sun-ei;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.639-647
    • /
    • 2005
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (EPMA), was applied to characterize samples collected at a subway station and ambient samples in Seoul. According to their chemical composition, many distinctive particle types were identified. For samples collected at the subway station platform, the major chemical species are carbon-rich, organic, aluminosilicates (AlSi), AlSi/C, AlSi/$CaCO_{3},\;CaCO_{3},\;SiO_{2},\;and\;Fe_{2}O_{3}$. For outdoor samples, carbon-rich, organic, AlSi, $CaCO_{3},\;SiO_{2},\;NaNO_{3},\;(Na,Mg)NO_{3},\;Na(CO_{3},NO_{3},SO_{4}),\;and\;(NH_{4})_2SO_4$, are abundantly encountered. Samples collected at the subway station show very high contents of $Fe_{2}O_{3}$, both in coarse and fine fractions, which come from brake block, subway train wheel, electric contact materials, etc. It is demonstrated that the single-particle characterization using this low-Z particle EPMA technique provided detailed information on various types of chemical species in indoor and outdoor samples.

Development of medium resolution cross-dispersed silicon grisms in the Near Infrared ; Direct Silicon wafer bonding technique

  • Jeong, Hyeon-Ju;Wang, Wei-Song;Gully-Santiago, Michael;Deen, Casey;Pak, Soo-Jong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • We are developing medium resolution cross-dispersed silicon grisms in the near IR region ($1.45{\sim}5.2{\mu}m$). The grisms will be installed in MIMIR, a multifunction instrument at the Lowel Observatory, USA. The two devices are designed to cover H and K band and L and M band simultaneously. Our goal is to make grism with R=3000 at 1.2 arcsec slit. The Silicon has high refractive index (n=3.4 at $1.5{\mu}m$) which enhances the resolving power by up to 5 times when compared to conventional material such as BK-7 (n=1.5 at 1.5 ${\mu}m$). The bonded grisms will be installed in a filter wheel for the uses switch from spectroscopic mode to imaging mode easily. Our device is compact and light weighted while it provides a decent resolving power. We produce monolithic grisms using e-beam lithography at the NASA JPL and chemically etching the grooves on the silicon prisms. Moreover, the main-disperser and cross-disperser will be contacted together by direct Si-Si bonding technique and eventually turn into one piece. The bonded pair offers more stability in terms of the layout of the spectrum and removes the Fresnel loss at the intersection of two grisms. We report on the proper wafer bonding steps through this research, and inspected the bonding quality thermally, optically and mechanically.

  • PDF