• Title/Summary/Keyword: 2T/2C

Search Result 12,494, Processing Time 0.047 seconds

Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques (중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析))

  • Woo, Hyo-Kyeng;Kim, Seong-Jin;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.

Resolution of the Triacylglycerols Containing Conjugate Trienoic Acids into Their Molecular Species by HPLC in the Reversed-phase and Silver Ion Mode (Reversed-phase 및 $Ag^{+}$-HPLC에 의한 Conjugate Trienoic Acid 함유(含有) Triacylglycerol 분자종(分子種)의 상호분리(相互分離))

  • Kim, Seong-Jin;Woo, Hyo-Kyeng;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.197-213
    • /
    • 2001
  • Conjugate trienoic acids (CTA) occurred in triacylglycerols (TGs) of the seed oils of Trichosanthes kirilowii, Momordica charantia and Aleurites fordii, and they were easily converted to their methyl esters in a mixture of sodium methoxide-methanol without any structural destruction. The main fatty acids in triacylglycerol (TG) fraction of the seed oils of Trichosanthes kirilowii are $C_{18:2{\omega}6}$ (32.2 mol %), $C_{18:3{\;}9c.11t,13c}$ (38.0 mol %) and $C_{18:1{\omega}9}$ (11.8 mol %), followed with $C_{16:0}$ (4.8 mol %) and $C_{18:0}$ (3.1 mol %). The TG fraction was resolved into 20 TG molecular species according to the partition number (PN) by reversed-phase (RP)-HPLC. The main TG species were $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$, of which amounts reached 63 mol % of total TG molecular species. The TG sample was fractionated into 11 fractions according to the number of double bond in the molecule by $Ag^{+}-HPLC$ and the species of $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$ were also eluted as main components. The TG species containing CTA showed unusual behaviours in the order of elution by HPLC ; first, TG moleular species of $DT_{c2}$ (D; dienoic acid, $T_{c}$; punicic acid, $T_{ci}$; ${\alpha}-eleostearic$ acid, M ; monoenoic acid, $S_{t}$; stearic acid) was eluted earlier than $Mt_{c2}$, although they have the same PN number of 40, and, secondly, the species of $DT_{ci2}$ with eight double bonds was eluted earlier than that of $D_2T_{ci}$ with seven double bonds. Intact TG of the seed oils of Momordica charantia contained mainly fatty acids such as $C_{18:3{\omega}9c,11t,13t}$ (57.7 mol %), $C_{18:1{\omega}9}$ (17.4 mol %), $C_{18:0}$ (12.3 mol %) and $C_{18:2{\omega}6}$ (10.6 mol %), and was classified into 13 fractions by RP-HPLC. The main TG species were as follows ; $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.1 mol %] and $S_{t}T_{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_2$, 33.9 mol %] comprising about 73 mol % of total TG species, accompanied by $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 7.3 mol %], $D_{2}T_{ci}$ [$ (C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13t})$, 3.6 mol %] and $MDT_{ci}$ [$(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})$, 3.5 mol %]. Simple TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_3]$ was present in a small amount of 1.4 mol %, but other simple TG species were not detected. The TG was also resolved into 11 fractions according to the number of double bond by $Ag^{+}-HPLC$, and the species were mainly occupied by $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.4 mol %] and $S_tT-{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$, 35.4 mol %] $DT_{ci2}$ species with eight double bonds was also developed faster than $D_2T_{ci}$ one with seven double bonds as indicated in the analysis of TG of the seed oils of T. kirilowii, and $MT_{ci2}$ species with cis, trans, trans-configurated double bond was eluted earlier than $MT_{c2}$ species with cis, trans, cis-configurated double bond. The main components of fatty acid in total TG fraction isolated from the seed oils of of Aleurites fordii were in the following order ; $C_{18:3\;9c,11t,13t}$ (81.2 mol %)> $C_{18:2{\omega}6}$ (8.5 mol %)> $C_{18:1{\omega}9}$ (5.4 mol %)$. With resolution of the TG by RP-HPLC, eight fractions such as $T_{ci3}$, $Dt_{ci2}$, $D_{2}T_{ci}$, $MT_{ci2}$, $PT_{ci2}$ (P; palmitic acid), $PMT_{ci}$, $PDT_{ci}$ and $S_{t}T_{ci2}$ ($S_{t}$; stearic acid) were isolated, respectively. TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_{3}$, 54.2 mol %], $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 15.0 mol %] and $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3 9c,11t,13t})_{2}$, 14.8 mol %] were present as main species.

Gene Frequencies and Phenotypes of Transferrin C Subtypes and Haptoglobin in Korean Population (한국인집단의 Transferrin C Subtypes와 Haptoglogin Phenotypes의 분포와 유전자 빈도)

  • 이정주;오문유
    • The Korean Journal of Zoology
    • /
    • v.26 no.3
    • /
    • pp.211-217
    • /
    • 1983
  • Genetic polymorphism of transferrin $(T_f)$ subtypes in Jeju population was studied by isoelectric focusing of human sera on polyacrylamide gels under high voltage, and haptolobin (Hp) polymorphism in Seoul and Jeju population was studied by polyacrylamide gel electrophoresis. Among 946 normal samples, three common types of transferrin, $T_{f}C_{1}, T_{f}C_{1}-C_{2} and T_{f}C_{2}$ were observed with some variants migrating slower than $T_{f}C$ subtypes, while among 139 patient (hepatitis) samples, only three common types were found. The gene frequencies were calculated as follows; in normal population, $T_{f}C^{1}$ was 0.7220; $T_{f}C^{2}, 0.2743; T_{f}D^{Jeju}, 0.0037$, and in patient population, $T_{f}C^{1} was 0.7194; T_{f}C^{2}, 0.2806$ respectively. Among 460 samples in Seoul and 502 in Jeju population, three types of haptoglobin, Hp 1-1, Hp 2-1 and Hp 2-2 were observed. The gene frequency of $Hp^1$ was 0.304, $Hp^2$, 0.696 in Seoul and in Jeju, $Hp^1$ was 0.269 and $Hp^2$, 0.731, respectively. The frequencies of the genes and the polymorphic phenotypes were discussed comparatively with the other populations.

  • PDF

The Formation of Trans Fatty Acids with Heat Treatment and Storage of Fats and Oils (II) -The contents and the kinds of Trans fatty acids- (유지의 가열 및 저장에 따른 Trans지방산 생성에 관한 연구 -제2보 ; Trans지방산 함량 및 조성 변화를 중심으로-)

  • Kim, Duk-Sook;Koo, Bon-Soon;Ahn, Myung-Soo
    • Korean journal of food and cookery science
    • /
    • v.6 no.3 s.12
    • /
    • pp.25-32
    • /
    • 1990
  • In this study, the cis to trans isomerization of unsaturated fatty acids were investigated about Soybean oil (SBO), Corn germ oil (CGO), Cottonseed oil (CSO), Margarine (MG), Shortening (ST) incubated at $40{\pm}2^{\circ}C$ for 35 days and heated at $185{\pm}2^{\circ}C$ for 24 hours. The contents and kinds of trans fatty acids in each sample were determined by GLC after seperating by HPLC. The results were obtained as follows; 1. When samples were incubated at $40{\pm}2^{\circ}C$ for 35 days, the contents of total trans fatty acids were increased from $0.5{\sim}12.3%$ to $0.8{\sim}20.5%$. The kinds of trans fatty acids found were $t-C_{18:1},\;t,c-C_{18:2},\;t,t-C_{18:2},\;t,c,c-C_{18:3}$ in $SBO,\;t-C_{18:1},\;t,c-C_{18:2}$ in $CGO,\;t-C_{16:1},\;t-C_{18:1},\;t,c-C_{18:2},\;t,t-C_{18:2}$ in CSO. Processed oil such as MG and ST showed more complicated composition of trans fatty acids than SBO, CGO and CSO. $t-C_{18:1},\;t,c-C_{18:2},\;t,t-C_{18:2},\;t,c,t-C_{18:3},\;t-C_{20:1}$ were detected in ST. 2. In the case of heating at $185{\pm}2^{\circ}C$ for 24 hours, the contents of total trans fatty acid were $1.6{\sim}37%$. 2% in all samples. Heating made more remarkable isomerization than incubation $(40{\pm}2^{\circ}C)$. Specially, $c,c,t-C_{18:3}$ in $SBO,\;t,t,t-C_{18:3}$ in $MG,\;t,c,t-C_{18:3},\;t,t,t-C_{18:3}$ in ST were detected. 3. The total contents of trans fatty acids of processed oil were higher than vegetable oils. During incubation, trans fatty acids increased in the order of MG>ST>CGO>SBO>CSO, and during heat treatment, MG>ST>SBO>CGO>CSO.

  • PDF

Effect of Plowing Frequency and Sowing Dates on the Agronomic Characteristics, Feed Value, Weed Yield and Palatability of Silage Corn (경운횟수와 파종기 이동이 사일리지용 옥수수의 생육특성, 사료가치, 잡초발생 및 가축의 기호성에 미치는 영향)

  • Lee, Sang-Moo;Kim, Byoung-Tae;Hwang, Joo-Hwan;Jeon, Byoung-Tae;Moon, Sang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.209-218
    • /
    • 2007
  • This experiment was conducted to investigate effect of plowing frequency and sowing dates on the agronomic characteristics, feed value, weed yield and palatability of silage corn. Treatments were a basal treatment(C: May 5 seeding, plowing once, weeding control once), T1(May 12 seeding, plowing twice, weeding control 0 time), T2(May 19 seeding, plowing three times, weeding control 0 time, T3(May 26 seeding, plowing four times, weeding control 0 time) and T4(June 2 seeding, plowing five times, weeding control 0 time). The experiment was performed at the College of Life and Natural Sciences of Sangju University in Sangju in 2006. The plant height and ear height showed highly in order to C > T1 > T2 > T3 > T4 treatment, leaf length was the highest at T2 (96.0cm). Leaf width and number of dead leaf were the highest at C and T3 (11.2cm), C, C and T1 (4.6), respectively. Stem diameter was the highest at T3 as 31mm, while T2 was the lowest as 25mm (p<0.05). Ear circle showed highly in order of C > T1 > T4 > T3 > T4 (p<0.05), and tip filling degree was the highest at C treatment as 8.8, while T4 treatment was the lowest as 6.0 (p<0.05). The stem hardness and grain hardness were C < T1 < T2 < T3 < T4 (p<0.05). Stem saccharinity was T1(6.1%) was the highest, while T2(3.0%) was the lowest(P<0.05). Fresh yield of weed was the lowest at C treatment as 500 kg/ha, but T1 treatment was the highest as 44,100 kg/ha (p<0.05). Weed coverage rate showed highly in order of T1 > T2 > T3 > T4 > C treatment (p<0.05). Fresh yield of corn was the highest at C treatment as T3,550 kg/ha, but T4 treatment was the lowest as 65,500 kg/ha (p<0.05). Dry matter yield of corn showed highly in order of C(26,978 kg/ha) > T1(26,130 kg/ha) > T2(20,255 kg/ha) > T3(20,255 kg/ha) > T4(17,508 kg/ha) treatment (p<0.05). Crude protein content was T1(7.69%) > T4(7.42%) > T2(6.34%) > T3(5.99%) > C(5.91%) treatment (p<0.05), and Crude fat content showed highly in order of C (2.13%) > T1(2.04%) > T2(1.96%) > T3(1.95%) > T4(1.84%) treatment. Relative palatability of Holstein, Korean native goat and spotted deer was the highest at C treatment, but Korean native cattle was the highest at T1 treatment.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Analyzing the Significance of T1 Slope minus Cervical Lordosis in Patients with Anterior Cervical Discectomy and Fusion Surgery

  • Lee, Ho Jin;You, Soon Tae;Sung, Jae Hoon;Kim, Il Sup;Hong, Jae Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.913-921
    • /
    • 2021
  • Objective : Accurate measurement of T1 slope (a component of T1s minus cervical lordosis [CL]) is often constrained by anatomical limitations. In this situation, efforts should be made to find the exact meaning of T1s-CL and whether there are any alternatives to it. Methods : We enrolled 117 patients who received two-level anterior cervical discectomy and fusion (ACDF). Occipital slope, C2 slope (C2s), C7 slope (C7s), T1, O-C2 angle (O-C2A), C2-7 angle (C2-7A), O-C7 angle (O-C7A), T1s-CL, C7-T1 angle (C7-T1A), and C2-7 sagittal vertical axis were measured. We determined 16° (T1s-CL) as the reference point for dividing subjects into the mismatch group and the balance group, and a comparative analysis was performed. Results : The mean value of C7-T1A was constantly maintained within 2.6° peri-operatively. In addition, C2s and T1s-CL showed the same absolute change (Δ|0.8|°). The mean values of T1s-CL of the mismatch and balance groups were 23.0° and 7.6°, respectively. The five factors with the largest differences between the two groups were as follows : C2s (Δ13.3°), T1s-CL (Δ15.4°), O-C2A (Δ8.7°), C2-7A (Δ14.7°), and segmental angle (Δ7.9°) before surgery. Only four factors showed statistically significant change between the two groups after ACDF : T1s-CL (Δ4.0° vs. Δ0.2°), C2s (Δ3.2° vs. Δ0.7°), O-C2A (Δ2.6° vs. Δ1.3°), C2-7A (Δ6.3° vs. Δ1.3°). A very strong correlation between T1s-CL and C2s was also found (r=|0.88-0.96|). Conclusion : C2s itself may be the essential key to represent T1s-CL. The amounts and directions of change of these two factors (T1s-CL and C2s) were also almost identical. The above phenomenon was re-confirmed once again through the correlation analysis.

Congruent Melt Composition of $LiTaO_3$ Single Crystal ($LiTaO_3$ 단결정의 완전용융조성)

  • 정대식;박병학;김유성;노용래
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 1993
  • A relationship $(T_c = -17.869C^2+1840.2C-46623)$ between Curie Temperature$(T_c)$ and (C), $Li_2O$ mole percent(%) was established from the measurement results of Curie temperature $(T_c)$) analysed by DTA(Differential Thermal Analysis) in the range from 48.50 to 49.00 $Li_2O$ mole %. Congruent melt composition of $LiTaO_3$ single crystal was to be 48.65 $Li_2O$ mole % and its Curie temperature was also determined to be $610{\pm}1^{\circ}C$ from the results of Curie temperature difference, ${\Delta}T (T_{c(Top)}-T{_c(Tail)})$ of Czochralski grown $LiTaO_3$ crystals and the distribution coefficient(k). The k was calculated from $LiO_2$ mole ratio of initial melt to final melt and initial crystal to final crystal in the range from 48.60 to 48.70 $Li_2O$ mole %.

  • PDF

Effect of Temperature on Mitotic Cycle of Rice Root Meristem Cells (벼 뿌리세포의 유사분열주기에 대한 배양온도의 영향)

  • 김재철;이승준;권성환;곽성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.65-72
    • /
    • 1990
  • The mitotic cycle duration and component plase periods of rice (Oryza sativa L. 'Sumjinbyeo and Seokwangbyeo') root merisem cells at 15, 20, and 30$^{\circ}C$ were determined the use of tritiated thymidine, In this work, the time interval between the maxima of sequential mitotic appearances of marked cells was used to estimate the mitotic cycle duration (MCD) of rice, The MCD of rice of the cultivar 'Sumjinbyeo' and 'Seokwangbyeo' at 20. and 30$^{\circ}C$ was 12. and 20hr, respectively. But the MCD of 'Sumjinbyeo' and 'Seokwangbyeo' was 18 and 20hr, at 15$^{\circ}C$. respectively. The MCD decreased with increasing temperature, The duration of component phase of rice cultivar 'Seokwangbyeo' were essentially the same ratio at 20$^{\circ}C$ and 30$^{\circ}C$. but in 'Sumjinbyeo' cultivar the ratio of $G_1$ period was almost doubled while those of $G_2$ and M were decreased by almost two times at 20$^{\circ}C$ and 30$^{\circ}C$. Deoxyribonucleic acid (DNA). Ribonucleic acid (RNA), and protein synthesis were reduced with increasing temperature from 15$^{\circ}C$ to 30$^{\circ}C$ while the MCD was decreased, This result suggest that DNA, RNA and protein synthesis may not affect the MCD from 15$^{\circ}C$ to 30$^{\circ}C$ in rice.

  • PDF

Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results

  • Luuk H.G.A. Hopman;Elizabeth Hillier;Yuchi Liu;Jesse Hamilton;Kady Fischer;Nicole Seiberlich;Matthias G. Friedrich
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • BACKGROUND: Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes. METHODS: We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver. RESULTS: In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed. CONCLUSIONS: cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers.