• 제목/요약/키워드: 2DEGs

검색결과 119건 처리시간 0.026초

RNA-seq Profiles of Immune Related Genes in the Spleen of Necrotic Enteritis-afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeong Ho;Lillehoj, Hyun S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권10호
    • /
    • pp.1496-1511
    • /
    • 2015
  • The study aimed to compare the necrotic enteritis (NE)-induced transcriptome differences between the spleens of Marek's disease resistant chicken line 6.3 and susceptible line 7.2 co-infected with Eimeria maxima/Clostridium perfringens using RNA-Seq. Total RNA from the spleens of two chicken lines were used to make libraries, generating 42,736,296 and 42,617,720 usable reads, which were assembled into groups of 29,897 and 29,833 mRNA genes, respectively. The transcriptome changes were investigated using the differentially expressed genes (DEGs) package, which indicated 3,255, 2,468 and 2,234 DEGs of line 6.3, line 7.2, and comparison between two lines, respectively (fold change ${\geq}2$, p<0.01). The transcription levels of 14 genes identified were further examined using qRT-PCR. The results of qRT-PCR were consistent with the RNA-seq data. All of the DEGs were analysed using gene ontology terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the DEGs in each term were found to be more highly expressed in line 6.3 than in line 7.2. RNA-seq analysis indicated 139 immune related genes, 44 CD molecular genes and 150 cytokines genes which were differentially expressed among chicken lines 6.3 and 7.2 (fold change ${\geq}2$, p<0.01). Novel mRNA analysis indicated 15,518 novel genes, for which the expression was shown to be higher in line 6.3 than in line 7.2 including some immune-related targets. These findings will help to understand host-pathogen interaction in the spleen and elucidate the mechanism of host genetic control of NE, and provide basis for future studies that can lead to the development of marker-based selection of highly disease-resistant chickens.

Identification and Functional Analysis of Differentially Expressed Genes Related to Metastatic Osteosarcoma

  • Niu, Feng;Zhao, Song;Xu, Chang-Yan;Chen, Lin;Ye, Long;Bi, Gui-Bin;Tian, Gang;Gong, Ping;Nie, Tian-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10797-10801
    • /
    • 2015
  • Background: To explore the molecular mechanisms of metastatic osteosarcoma (OS) by using the microarray expression profiles of metastatic and non-metastatic OS samples. Materials and Methods: The gene expression profile GSE37552 was downloaded from Gene Expression Omnibus database, including 2 human metastatic OS cell line models and 2 two non-metastatic OS cell line models. The differentially expressed genes (DEGs) were identified by Multtest package in R language. In addition, functional enrichment analysis of the DEGs was performed by WebGestalt, and the protein-protein interaction (PPI) networks were constructed by Hitpredict, then the signal pathways of the genes involved in the networks were performed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server (KAAS). Results: A total of 237 genes were classified as DEGs in metastatic OS. The most significant up- and down-regulated genes were A2M (alpha-2-macroglobulin) and BCAN (brevican). The DEGs were significantly related to the response to hormone stimulus, and the PPI network of A2M contained IL1B (interleukin), LRP1 (low-density lipoprotein receptor-related protein 1) and PDGF (platelet-derived growth factor). Furthermore, the MAPK signaling pathway and focal adhesion were significantly enriched. Conclusions: A2M and its interactive proteins, such as IL1B, LRP1 and PDGF may be candidate target molecules to monitor, diagnose and treat metastatic OS. The response to hormone stimulus, MAPK signaling pathway and focal adhesion may play important roles in metastatic OS.

Gene Expression Profiling in Hepatic Tissue of two Pig Breeds

  • Jang, Gul-Won;Lee, Kyung-Tai;Park, Jong Eun;Kim, Heebal;Kim, Tae-Hun;Choi, Bong-Hwan;Kim, Myung Jick;Lim, Dajeong
    • Journal of Animal Science and Technology
    • /
    • 제54권6호
    • /
    • pp.383-394
    • /
    • 2012
  • Microarray analyses provide information that can be used to enhance the efficiency of livestock production. For example, microarray profiling can potentially identify the biological processes responsible for the phenotypic characteristics of porcine liver. We performed transcriptome profiling to identify differentially expressed genes (DEGs) in liver of pigs from two breeds, the Korean native pigs (KNP) and Yorkshire pigs. We correctly identified expected DEGs using factor analysis for robust microarray summarization (FARMS) and robust multi-array average (RMA) strategies. We identified 366 DEGs in liver (p<0.05, fold-change>2). We also performed functional analyses, including gene ontology and molecular network analyses. In addition, we identified the regulatory relationship between DEGs and their transcription factors using in silico and qRT-PCR analysis. Our findings suggest that DEGs and their transcription factors may have a potential role in adipogenesis and/or lipid deposition in liver tissues of two pig breeds.

Identifying Differentially Expressed Genes and Small Molecule Drugs for Prostate Cancer by a Bioinformatics Strategy

  • Li, Jian;Xu, Ya-Hong;Lu, Yi;Ma, Xiao-Ping;Chen, Ping;Luo, Shun-Wen;Jia, Zhi-Gang;Liu, Yang;Guo, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5281-5286
    • /
    • 2013
  • Purpose: Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. Materials and Methods: The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. Results: A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. Conclusions: The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.

Comparison of transcriptome between high- and low-marbling fineness in longissimus thoracis muscle of Korean cattle

  • Beak, Seok-Hyeon;Baik, Myunggi
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.196-203
    • /
    • 2022
  • Objective: This study compared differentially expressed genes (DEGs) between groups with high and low numbers of fine marbling particles (NFMP) in the longissimus thoracis muscle (LT) of Korean cattle to understand the molecular events associated with fine marbling particle formation. Methods: The size and distribution of marbling particles in the LT were assessed with a computer image analysis method. Based on the NFMP, 10 LT samples were selected and assigned to either high- (n = 5) or low- (n = 5) NFMP groups. Using RNA sequencing, LT transcriptomic profiles were compared between the high- and low-NFMP groups. DEGs were selected at p<0.05 and |fold change| >2 and subjected to functional annotation. Results: In total, 328 DEGs were identified, with 207 up-regulated and 121 down-regulated genes in the high-NFMP group. Pathway analysis of these DEGs revealed five significant (p<0.05) Kyoto encyclopedia of genes and genomes pathways; the significant terms included endocytosis (p = 0.023), protein processing in endoplasmic reticulum (p = 0.019), and adipocytokine signaling pathway (p = 0.024), which are thought to regulate adipocyte hypertrophy and hyperplasia. The expression of sirtuin4 (p<0.001) and insulin receptor substrate 2 (p = 0.043), which are associated with glucose uptake and adipocyte differentiation, was higher in the high-NFMP group than in the low-NFMP group. Conclusion: Transcriptome differences between the high- and low-NFMP groups suggest that pathways regulating adipocyte hyperplasia and hypertrophy are involved in the marbling fineness of the LT.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats

  • Yoo, Won Gi;Kang, Jung-Mi;Le, Huong Giang;Pak, Jhang Ho;Hong, Sung-Jong;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • 제58권5호
    • /
    • pp.513-525
    • /
    • 2020
  • Clonorchis sinensis is a food-borne trematode that infects more than 15 million people. The liver fluke causes clonorchiasis and chronical cholangitis, and promotes cholangiocarcinoma. The underlying molecular pathogenesis occurring in the bile duct by the infection is little known. In this study, transcriptome profile in the bile ducts infected with C. sinensis were analyzed using microarray methods. Differentially expressed genes (DEGs) were 1,563 and 1,457 at 2 and 4 weeks after infection. Majority of the DEGs were temporally dysregulated at 2 weeks, but 519 DEGs showed monotonically changing expression patterns that formed seven distinct expression profiles. Protein-protein interaction (PPI) analysis of the DEG products revealed 5 sub-networks and 10 key hub proteins while weighted co-expression network analysis (WGCNA)-derived gene-gene interaction exhibited 16 co-expression modules and 13 key hub genes. The DEGs were significantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes pathways, which were related to original systems, cellular process, environmental information processing, and human diseases. This study uncovered a global picture of gene expression profiles in the bile ducts infected with C. sinensis, and provided a set of potent predictive biomarkers for early diagnosis of clonorchiasis.

A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma

  • Mahfuz, A.M.U.B.;Zubair-Bin-Mahfuj, A.M.;Podder, Dibya Joti
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.16.1-16.14
    • /
    • 2021
  • Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.

Bioinformatical Analysis of Messenger RNA and MicroRNA on Canine Splenic Tumors Based on Malignancy and Biopsy Sites

  • Eunpyo Kim;Giup Jang;Jin-Wook Kim;Wan-Hee Kim;Geon-A Kim
    • 한국임상수의학회지
    • /
    • 제40권2호
    • /
    • pp.164-174
    • /
    • 2023
  • Canine splenic tumors (STs) are commonly diagnosed during imaging examinations, such as in X-ray and ultrasonography examinations, suggesting their higher prevalence, especially in older dogs. Despite this high prevalence, there are no effective treatment options for STs because of the difficulties in determining therapeutic targets. However, recently, the importance of microRNAs (miRNAs) has evolved owing to their ambivalent characteristics. Biomarkers and novel therapies using miRNAs have been well-studied in human cancer research compared to canine research, except for mammary gland tumors. Therefore, this study aimed to comparatively analyze miRNA expression profiles according to malignancy and biopsy sites to identify novel therapeutic and diagnostic targets. Tissue samples were collected directly from splenic tumor masses and immersed in RNAlater solution for further analysis. To investigate differentially expressed genes (DEGs) between tumor and normal tissues, we used RNA-seq and miRNA microarray analysis. Then, functional analysis based on DEGs was conducted to sort tumor-related DEGs. We found that cfa-miR-150 was upregulated in benign tumors, whereas cfa-miR-134 was upregulated in malignant tumors. Despite limited information on canine miRNAs, we identified two potential biomarkers for the differential diagnosis of STs.