• 제목/요약/키워드: 2D-video-disdrometer

검색결과 5건 처리시간 0.019초

이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구 (Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator)

  • 김해림;박혜숙;박향숙;박종서
    • 대기
    • /
    • 제24권2호
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

이중편파레이더 관측오차 보정에 따른 강수량 추정값 개선 (Improvement of Rainfall Estimation according to the Calibration Bias of Dual-polarimetric Radar Variables)

  • 김해림;박혜숙;고정석
    • 한국수자원학회논문집
    • /
    • 제47권12호
    • /
    • pp.1227-1237
    • /
    • 2014
  • 이중편파레이더는 강수의 형태를 구분하고 대기 중의 기상 현상뿐만 아니라 비강수에코에 대한 정보를 제공하기 때문에 보다 정확한 강수량 추정을 가능하게 한다. 그러나 수직, 수평으로 진동하는 전파를 송 수신하여 생성되는 이중편파레이더 관측변수들은 레이더 자체가 갖는 시스템적 관측오차를 포함하기 때문에 정량적 강수량 추정을 위해서는 이에 대한 보정이 필수적이다. 본 연구에서는 2차원 영상우적계(2-Dimensional Video Disdrometer, 이하 2DVD) 관측 자료를 이용하여 비슬산 이중편파레이더가 갖는 Z, $Z_{DR}$ 관측오차를 계산한 후, 관측오차 보정에 따라 강수량이 정량적으로 얼마나 개선되는지를 살펴보았다. 총 33강수사례에 대한 분석결과, Z는 약-0.3~5.5 dB, $Z_{DR}$는 -0.1~0.6 dB의 관측오차를 가지며, 대부분의 사례에서 Z와 $Z_{DR}$는 모의된 값보다 낮게 관측하였다. 관측오차를 보정한 전 후 산출된 이중편파레이더 강수량 추정값을 지상관측 강우강도와 비교한 결과, 평균 bias와 RMSE는 각각 1.54 mm/hr, 1.73 mm/hr로 보정 전의 1.69 mm/hr, 2.54 mm/hr 보다 감소함으로써 지상우량계 관측값 대비 레이더 강수량 추정값이 약 7~61% 향상되었다.

2차원 광학 우적계 자료를 이용한 대구지역 우적크기분포 특성 분석 (Characteristic of Raindrop Size Distribution Using Two-dimensional Video Disdrometer Data in Daegu, Korea)

  • 방원배;권수현;이규원
    • 한국지구과학회지
    • /
    • 제38권7호
    • /
    • pp.511-521
    • /
    • 2017
  • 본 연구는 우적크기분포의 통계적 특성과 변동성을 알아보기 위하여, 2011-2012년 대구지역 2차원광학우적계자료를 분석하여 Marshall and Palmer(1948)의 우적크기분포 특성과 비교하였다. 우적크기분포의 특성변수로 강우강도(R), 레이더 반사도(Z), 보편특성수농도($N{_0}^{\prime}$), 보편특성직경($D{_m}^{\prime}$)을 계산하였다. 또한 스케일링 법칙을 사용하여 우적크기분포의 정규화 여부를 확인하였다. 분석 결과, 대구지역의 우적크기분포는 평균적으로 ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$이며 형태 인자의 경우 c =2.37, ${\mu}=0.39$를 가졌다. 대구지역의 우적크기분포를 Marshall and Palmer의 우적크기분포로 가정하여 계산한 결과, 평균적으로 ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$를 가졌다. 이 차이로부터 대구지역 우적크기분포는 Marshall and Palmer(1948)의 우적크기분포보다 통계적으로 더 높은 액체수함량을 가짐을 알 수 있다. 우적크기분포의 형태를 비교한 결과, 대구지역 우적크기분포는 위로 볼록한 모양이었다. Z > 45 dBZ를 기준으로 우적크기분포 형태에 변화가 있었다. 35 dBZ ${\leq}$ Z > 45 dBZ에서 대구지역 우적크기분포 특성은 해양성 기후대와 유사하였으나 Z > 45 dBZ에서는 Marshall and Palmer의 우적크기분포 특성과 유사하였다.

Ka-밴드 구름레이더 자료품질 및 구름통계 기초연구 (Preliminary Analysis of Data Quality and Cloud Statistics from Ka-Band Cloud Radar)

  • 예보영;이규원;권수현;이호우;하종철;김연희
    • 대기
    • /
    • 제25권1호
    • /
    • pp.19-30
    • /
    • 2015
  • The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.

구름미세물리 모수화 방안 내 빗방울의 특성을 정의하는 매개변수가 한반도 여름철 강수 모의에 미치는 영향 (Effects of Parameters Defining the Characteristics of Raindrops in the Cloud Microphysics Parameterization on the Simulated Summer Precipitation over the Korean Peninsula)

  • 김기병;김권일;이규원;임교선
    • 대기
    • /
    • 제34권3호
    • /
    • pp.305-317
    • /
    • 2024
  • The study examines the effects of parameters that define the characteristics of raindrops on the simulated precipitation during the summer season over Korea using the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) cloud microphysics scheme. Prescribed parameters, defining the characteristics of hydrometeors in the WDM6 scheme such as aR, bR, and fR in the fall velocity (VR) - diameter (DR) relationship and shape parameter (𝜇R) in the number concentration (NR) - DR relationship, presents different values compared to the observed data from Two-Dimensional Video Disdrometer (2DVD) at Boseong standard meteorological observatory during 2018~2019. Three experiments were designed for the heavy rainfall event on August 8, 2022 using WRF version 4.3. These include the control (CNTL) experiment with original parameters in the WDM6 scheme; the MUR experiment, adopting the 50th percentile observation value for 𝜇R; and the MEDI experiment, which uses the same 𝜇R as MUR, but also includes fitted values for aR, bR, and fR from the 50th percentile of the observed VR - DR relationship. Both sensitivity experiments show improved precipitation simulation compared to the CNTL by reducing the bias and increasing the probability of detection and equitable threat scores. In these experiments, the raindrop mixing ratio increases and its number concentration decreases in the lower atmosphere. The microphysics budget analysis shows that the increase in the rain mixing ratio is due to enhanced source processes such as graupel melting, vapor condensation, and accretion between cloud water and rain. Our study also emphasizes that applying the solely observed 𝜇R produces more positive impact in the precipitation simulation.