• Title/Summary/Keyword: 2D-resistivity structure

Search Result 90, Processing Time 0.026 seconds

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

3D Resistivity Survey for Dam Safety Inspection (저수지 안전진단을 위한 3차원 전기비저항 탐사)

  • Cho, In-Ky;Yong, Hwan-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Resistivity method has been used for the dam safety inspection and, for the convenience of fieldwork, two-dimensional (2D) resistivity data has been usually measured along the dam crest. However, since the dam has three-dimensional (3D) structure, 2D resistivity survey along the dam crest violates 2D assumption and 3D effects caused by 3D topography and material properties in the dam distort the inversion result of 2D resistivity data acquired along the dam crest. Furthermore, it is really hard to evaluate the 3D structure of the dam and 3D leakage pathway using 2D resistivity survey because 2D resistivity survey can provide only 2D resistivity section beneath the survey line. In this study, 3D resistivity survey was conducted at a dam in Korea. By comparing the results from 3D and 2D resistivity surveys, merit and demerits of 3D survey were investigated. Finally, it was confirmed that 3D survey can provide more accurate information about the dam status and 3D leakage pathway compared to the 2D survey. Therefore the 3D resistivity survey should be actively expanded for more accurate dam safety inspection even though more time and expense are required.

Application of 4-D resistivity imaging technique to visualize the migration of injected materials in subsurface (지하주입 물질 거동 규명을 위한 4차원 전기비저항 영상화)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.31-42
    • /
    • 2007
  • Dc resistivity monitoring has been increasingly used in order to understand the changes of subsurface conditions in terms of conductivity. The commonly adopted interpretation approach which separately inverts time-lapse data may generate inversion artifacts due to measurement error. Eventually the contaminated error amplifies the artifacts when reconstructing the difference images to quantitatively estimate the change of ground condition. In order to alleviate the problems, we defined the subsurface structure as four dimensional (4-D) space-time model and developed 4-D inversion algorithm which can calculate the reasonable subsurface structure continuously changing in time even when the material properties change during data measurements. In this paper, we discussed two case histories of resistivity monitoring to study the ground condition change when the properties of the subsurface material were artificially altered by injecting conductive materials into the ground: (1) dye tracer experiment to study the applicability of electrical resistivity tomography to monitoring of water movement in soil profile and (2) the evaluation of cement grouting performed to reinforce the ground. Through these two case histories, we demonstrated that the 4-D resistivity imaging technique is very powerful to precisely delineate the change of ground condition. Particularly owing to the 4-D inversion algorithm, we were able to reconstruct the history of the change of subsurface material property.

  • PDF

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

Three dimensional resistivity structure of the Serra da Cangalha crater inferred from magnetotelluric modeling

  • Adepelumi Adekunle Abraham
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.182-188
    • /
    • 2004
  • In view of the circular geometry of the Serra da Cangalha impact crater, we have carried out a 3D forward modeling computation for twenty-five MT data in order to obtain the 3D resistivity forward model for the crater region. The 3D resistivity forward model revealed a five-layer model, showing a significant reduction in the basement resistivity. We suggest that this, perhaps, could be due to the structural disturbances that have been caused by the meteorite impact on the crater about 220 million years ago resulting in brecciation, fracturing, alteration and shocked zone filled with fluids. Also, the sensitivity analysis of the 3D model chosen indicates that 3D models having a crater diameter greater than 151 are inconsistent with our data because the 3D model responses are very sensitive to changes in the diameter beyond 15 km. This analysis also reveals that, the depth limits (for the 3D body) causing the anisotropic effects seen on some of our apparent resistivity curves maximally does not extend beyond 1.2 km depth.

  • PDF

Application Techniques of 2D-Resistivity Structure for Estimation of Inferred Fracture Zone in Weathered Slope (풍화사면에서의 추정파쇄대 평가를 위한 2차원 전기비저항 구조도 적용 기법)

  • Kim, Jae-Hong;Park, Chal-Sook;Lee, Hyun-Jae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Electrical resistivity survey is applied for estimation of inferred fault and fractured zone in civil engineering and environment field. While 15 m diameter and 3 lines tunnels are excavated. It is recognized that core stone and fractured zone is existed in the weathered slope of the entrance to a tunnel. To make confirmation geological characteristics, dipole-dipole electric resistivity survey was carried out in weathered slope of the entrance to a tunnel. Core stone distribution and fracture zone characteristics are estimated by reverse analysis and 2D-resistivity structure using FDM.

Deep structure of Ulsan fault by electric and EM surveys in ipsil area, South of Kyeongju (전기, 전자탐사에 의한 경주남부 (입실지역)의 울산 단층 심부구조)

  • 손호응
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • Electric and electromagnetic surveys were conducted to investigate the deep structure of the Ulsan fault in Ipsil area, south of Kyeongju. On this study, especially high-frequency magnetotelluric method of electromagnetic survey in the frequency range of 10~100,000 Hz was mainly employed to study the deep subsurface configuration. High-frequency MT survey was performed at 70 points of spacing 30~50 m, making 3.8 km survey line. As a survey result, a 2-km-depth 2-D cross-section was achieved. It shows vertical and horizontal subsurface variations of resistivity values. Near-surface layer having low resistivity value becomes thicker eastward up to 800m. There is a steep low resistivity zone in the west side of survey line, and there exists two low resistivity zones dipping west in the east side of survey line. Two low resistivity zones are interpreted to be related to major movement pattern of the Ulsan fault. This suggests that major fault lines are developed on both peripheral sides of the broad fault zone.

  • PDF

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF

3D Effect of Embankment Dam Geometry to Resistivity Data (3차원 댐구조가 전기비저항 자료에 미치는 영향)

  • Cho, In-Ky;Lee, Keun-Soo;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of the embankment distorts significantly resistivity data measured on anywhere of the dam. This study evaluates the influence from 3D effects created by specific dam geometry and effects of water level fluctuations through the 3D finite element modeling technique. Also, a comparison between different locations of survey line are carried out, and topographic correction technique is developed for the resistivity data obtained along the embankment dam. Furthermore, using synthetic resistivity data for an embankment dam model with leakage zone, detectability of leakage zones is estimated through 2.5D inversion.

Distortion of Resistivity Data Due to the 3D Geometry of Embankment Dams (저수지 3차원 구조에 의한 전기비저항 탐사자료의 왜곡)

  • Cho, In-Ky;Kang, Hyung-Jae;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of embankments distorts significantly resistivity data measured on anywhere of the dam. In this study, we analyse the influence from 3D effects created by specific dam geometry through the 3D finite element modeling technique. We compared 3D effects when resistivity surveys are carried out on the upstream slope, left edge of the crest, center of the crest, right edge of the crest and downstream slope. We ensure that 3D effect is greatly different according to the location of the survey line and data obtained on the downstream slope are most greatly influenced by 3D dam geometry. Also, resistivity data are more influenced by the electrical resistivity of materials constituting reservoir than 3D effects due to specific dam geometry. Furthermore, using resistivity data synthesized with 3D modeling program for an embankment dam model with leakage zone, we analyse the possibility of leakages detection from 2D resistivity surveys performed along the embankment dam.