• Title/Summary/Keyword: 2D-DCT

Search Result 154, Processing Time 0.023 seconds

Comparison of cone beam CT and conventional CT in absorbed and effective dose (Cone beam CT와 일반 CT의 흡수선량 및 유효선량 비교평가)

  • Kim, Sang-Yeon;Han, Jin-Woo;Park, In-Woo
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Purpose: This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Materials and Methods: Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Crane x 3+(Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Results: Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy 3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy 1, 0.70 mGy for Cranex 3+. Effective doses $(E_{2005draft)$ were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy 3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy 1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023mSv). Conclusion: Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  • PDF

Three-dimensional morphometric analysis of mandibule in coronal plane after bimaxillary rotational surgery

  • Lee, Sung-Tak;Choi, Na-Rae;Song, Jae-Min;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.49.1-49.9
    • /
    • 2016
  • Background: The aim of this report is to present a new reference for aesthetic mandible surgery using three-dimensional cone-beam computed tomography-based treatment planning for orthognathic surgery which can be implemented in surgical planning and perioperative procedure. Methods: To make an objective standard for evaluating aesthetic mandibular outline, we make an aesthetic scoring criteria with consideration of asymmetry, broad mandibular border line, and prominent mandibular angle. Two maxillofacial surgeons and two orthodontists rated their aesthetical evaluation from 1 to 5. Experimental group consisting of 47 female and 38 male patients who had rotational orthognathic two-jaw surgery from 2010 to 2011 were chosen according to aesthetic scoring done by two maxillofacial surgeons and two orthodontists. A high aesthetic score (${\geq}16$) means the facial contour is symmetric, with no broad and narrow aesthetic mandible frontal profiles. Control A group consisted of ten female and ten male patients who had no orthognathic surgery experience and low aesthetic score (${\geq}10$). Control B group consisted of ten female and ten male patients who had no orthognathic surgery experience and had anaesthetic mandibular frontal profile and a high aesthetic score (${\geq}16$). The three-dimensional image of the patient was taken from dental cone-beam CT (DCT) scanning (experimental group and control A group: 6 months DCT after surgery, control B group: 1st visit DCT). Each DCT was reformatted to reorient the 3D image using 3D analyzing program (OnDemand3D, cybermed Inc, CA, USA). After selection of 12 landmarks and the construction of reoriented horizontal, vertical, and coronal reference lines, 15 measurements were taken in 3D analysis of frontal mandibular morphology. Afterwards, horizontal and vertical linear measurements and angular measurements, linear ratio were obtained. Results: Mean $Go^{\prime}_{Rt}-Me^{\prime}-Go^{\prime}_{Lt}$ angular measurement was $100.74{\pm}2.14$ in female patients and $105.37{\pm}3.62$ in male patients. These showed significant difference with control A group in both genders. Ratio of $Go^{\prime}_{Rt}-Go^{\prime}_{Lt}-Me^{\prime}$ length to some linear measurements (ratio of $Me^{\prime}-Cd^{\prime}_{Rt}Cd^{\prime}_{Lt}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$, ratio of $Me^{\prime}-Go^{\prime}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$, ratio of $Go^{\prime}_{Rt}-Go^{\prime}_{Lt}$ to $Me^{\prime}-Go^{\prime}_{Rt}Go^{\prime}_{Lt}$) showed significant difference with control A group in both genders. Conclusion: This study was intended to find some standard measurement of mandible frontal view in 3D analysis of aesthetic patient. So, these potential measurement value may be helpful for orthognathic treatment planning to have more aesthetic and perspective outcomes.

Enhanced Coding Method by Remapping of Integral Images (집적 영상 재배치를 통한 부호화효율 향상 방법)

  • Kim, Su-Bin;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose an integral image compression method to improve the coding efficiency. As the characteristics of integral images are various according to the distance between a camera and objects, complexity of the objects and background, etc, the coding efficiency can be improved by applying a coding method adaptive to the characteristics. In addition, as the integral images are compressed by the unit of elemental images, the coding efficiency can be improved. by employing a coding method optimized to the coding direction of elemental images. Therefore, the proposed method remaps an integral image with six kinds of mapping rules, and then the conventional 3D-DCT based compression method is applied to the remapped images. Finally, we perform the rate-distortion optimization to choose the best of the mapping rules. Experimental results show that the proposed method yields high gains in image quality and bit-rate.

The Analysis of Predictive Factors for the Identification of Patients Who Could Benefit from Respiratory-Gated Radiotherapy in Non-Small Cell Lung Cancer (비소세포성 폐암에서 호흡동기방사선치료 적용 환자군의 선택을 위한 예측인자들의 분석)

  • Jang, Seong-Soon;Park, Ji-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.4
    • /
    • pp.228-239
    • /
    • 2009
  • Purpose: 4DCT scans performed for radiotherapy were retrospectively analyzed to assess the possible benefits of respiratory gating in non-small cell lung cancer (NSCLC) and established the predictive factors for identifying patients who could benefit from this approach. Materials and Methods: Three treatment planning was performed for 15 patients with stage I~III NSCLC using different planning target volumes (PTVs) as follows: 1) PTVroutine, derived from the addition of conventional uniform margins to gross tumor volume (GTV) of a single bin, 2) PTVall phases (patient-specific PTV), derived from the composite GTV of all 6 bins of the 4DCT, and 3) PTVgating, derived from the composite GTV of 3 consecutive bins at end-exhalation. Results: The reductions in PTV were 43.2% and 9.5%, respectively, for the PTVall phases vs. PTVroutine and PTVgating vs. PTVall phases. Compared to PTVroutine, the use of PTVall phases and PTVgating reduced the mean lung dose (MLD) by 18.1% and 21.6%, and $V_{20}$ by 18.2% and 22.0%, respectively. Significant correlations were seen between certain predictive factors selected from the tumor mobility and volume analysis, such as the 3D mobility vector, the reduction in 3D mobility and PTV with gating, and the ratio of GTV overlap between 2 extreme bins and additional reductions in both MLD and $V_{20}$ with gating. Conclusion: The additional benefits with gating compared to the use of patient-specific PTV were modest; however, there were distinct correlations and differences according to the predictive factors. Therefore, these predictive factors might be useful for identifying patients who could benefit from respiratory-gated radiotherapy.

Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy (방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰)

  • Park, Ryeong-Hwang;Kim, Min-Jung;Lee, Sang-Kyu;Park, Kwang-Woo;Jeon, Byeong-Cheol;Cho, Jeong-Hee;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 2011
  • This study was to measure the patient dose difference between 3D treatment planning CT and 4D respiratory gating CT. Study was performed with each 10 patients who have lung and liver cancer for measured patient exposure dose by using SOMATON SENSATION OPEN(SIMENS, GERMANY). CTDIvol and DLP value was used to analyze patient dose, and actual dose was measured in the location of liver and kidney for abdominal examination and lung, heart and spinal cord for chest examination. Rando phantom were used for the experiment. OSLD was used for in-vitro and in-vivo dosimetry. Increasing overall actual dose in 4D respiratory gated CT-simulation using OSLD increase the dose by 5.5 times for liver cancer patients and 6 times for lung cancer patients. In CT simulation of 10 lung cancer patients, CTDIvol value was increased by 5.7 times and DLP 2.4 times. For liver cancer patients, CTDIvol was risen by 3.8 times and DLP 1.6 times. The accuracy of treatment volume could be increased in 4D CT planning for position change due to the breaths of patient in the radiation therapy. However, patients dose was increased in 4D CT than 3D CT. In conclusion, constant efforts is required to reduce patients dose by reducing scan time and scan range.

Transform Domain Resizing for DCT-Based Codec (DCT 코덱에 기반한 변환 영역에서의 리사이징 알고리즘)

  • 신건식;장준영;강문기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.25-34
    • /
    • 2004
  • The ability to perform the same operations in the transform domain as in the spatial domain is important for efficient image transmission through a channel. We perform image resizing, which includes magnifying and reducing the size, in the discrete cosine transform(DCT) domain and the effects of the transform domain approach are analyzed in the corresponding spatial domain. Based on this analysis, the two resizing algorithms are proposed. The first one further compresses the images encoded by the compression standard by reducing the size before compression, and the other reduces the loss of information while maintaining the conventional compression rate. Because of its compatibility with standard codec, these algorithms can be easily embedded in JPEG and MPEG codecs, which are widely used for the purpose of image storage and transmission. Experimental results show a reduction of about half the bit size with similar image quality and about a 2- or 3-dB quality improvements in the similar compression rate.

Auto-Covariance Analysis for Depth Map Coding

  • Liu, Lei;Zhao, Yao;Lin, Chunyu;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3146-3158
    • /
    • 2014
  • Efficient depth map coding is very crucial to the multi-view plus depth (MVD) format of 3-D video representation, as the quality of the synthesized virtual views highly depends on the accuracy of the depth map. Depth map contains smooth area within an object but distinct boundary, and these boundary areas affect the visual quality of synthesized views significantly. In this paper, we characterize the depth map by an auto-covariance analysis to show the locally anisotropic features of depth map. According to the characterization analysis, we propose an efficient depth map coding scheme, in which the directional discrete cosine transforms (DDCT) is adopted to substitute the conventional 2-D DCT to preserve the boundary information and thereby increase the quality of synthesized view. Experimental results show that the proposed scheme achieves better performance than that of conventional DCT with respect to the bitrate savings and rendering quality.

Hologram Compression Technique using Motion Compensated Temporal Filtering (움직임보상 시간적 필터링을 이용한 홀로그램 압축 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1296-1302
    • /
    • 2009
  • We propose an efficient coding method of digital holograms using MCTF and standard compression tools for video. The hologram is generated by a computer-generated hologram (CGH) algorithm with both an object image and its depth information. The proposed coding consists of localization by segmenting a hologram, frequency transform using $64\times64$ segment size, 2-D discrete cosine transform DCT for extracting redundancy, motion compensated temporal filtering (MCTF), segment scanning the segmented hologram to form a video sequence, and video coding, which uses H.264/AVC. The proposed algorithm illustrates that it has better properties for reconstruction, 10% higher compression rate than previous research in case of object.

A New Watermarking Algorithm for 3D Stereoscopic Image based on Depth and texture images (깊이 및 텍스쳐 영상 기반의 3D 입체 영상을 위한 워터마킹 알고리즘)

  • Seo, Young-Ho;Kim, Bo-Ra;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.551-561
    • /
    • 2014
  • Since the depth and texture images have been widely used for generating 3-dimensional stereoscopic image, the security of them have been focused. In this paper, we propose a new watermarking technique for copyright of stereo and multiview images which is generated in an arbitrary viewpoint by depth and texture image. After the mark space is selected for preserving watermark through DIBR (depth-image-based rendering) process which uses 3D warping, the texture image is transformed to the frequency coefficient using 2D DCT (discrete cosine transform). Some parts of them are quantized, which is the corresponding process to watermarking. The embedded watermark is not conformed by eyes, so we identified the invisibility of the proposed method. In case of appling attacks of general image process, we also identified the robustness of it.

Rate-Distortion Based Image Segmentation Using Recursive Merging and Texture Approximation (질감 근사화 및 반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 정춘식;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.156-166
    • /
    • 2000
  • A rate-distortion based segmentation using recursive merging is presented, which considers texture as a homogeneity by adopting the procedure of a generalized texture approximation. The texture in a region is approximated by SA-DCT and a set of two uniform quantizers with fixed step sizes, one for DC and another for AC. Using the approximated texture, we calculated the rate-distortion based cost. The segmentation using recursive merging is performed by using the rate-distortion based cost. Experimental results for 256$\times$256 Lena show that the region-based coding using the proposed segmentation yields the PSNR improvements of 0.8~ 1.0 dB and 1.2~1.5 dB over that using the rate-distortion based segmentation with DC approximation only and JPEG, respectively.

  • PDF