• Title/Summary/Keyword: 2D to 3D Anaglyph Image Conversion

Search Result 3, Processing Time 0.019 seconds

2D to 3D Anaglyph Image Conversion using Quadratic & Cubic Bézier Curve in HTML5 (HTML5에서 Quadratic & Cubic Bézier 곡선을 이용한 2D to 3D 입체 이미지 변환)

  • Park, Young Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.553-560
    • /
    • 2014
  • In this paper, we propose a method to convert 2D image to 3D anaglyph using quadratic & cubic B$\acute{e}$zier Curves in HTML5. In order to convert 2D image to 3D anaglyph image, we filter the original image to extract the RGB color values and create two images for the left and right eyes. Users are to set up the depth values of the image through the control point using the quadratic and cubic B$\acute{e}$zier curves. We have processed the depth values of 2D image based on this control point to create the 3D image conversion reflecting the value of the control point which the users select. All of this work has been designed and implemented in Web environment in HTML5. So we have made it for anyone who wants to create their 3D images and it is very easy and convenient to use.

2D to 3D Anaglyph Image Conversion using Linear Curve in HTML5 (HTML5에서 직선의 기울기를 이용한 2D to 3D 입체 이미지 변환)

  • Park, Young Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.521-528
    • /
    • 2014
  • In this paper, we propose the method of converting 2D image to 3D image using linear curves in HTML5. We use only one image without any other information about depth map for creating 3D images. So we filter the original image to extract RGB colors for left and right eyes. After selecting the ready-made control point of linear curves to set up depth values, users can set up the depth values and modify them. Based on the depth values that the end users select, we reflect them. Anaglyph 3D is automatically made with the whole and partial depth information. As all of this work has been designed and implemented in Web environment using HTML5, it is very easy and convenient and end users can create any 3D image that they want to make.

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.