• Title/Summary/Keyword: 2D porosity

Search Result 250, Processing Time 0.027 seconds

Effects of Al Doping on Sinterabllity and Microstructure in $UO_2-6wt%Gd_2O_3$ Pellets ($UO_2-6wt%Gd_2O_3$ 소결체에서 Al 첨가가 소결성 및 미세조직에 미치는 영향)

  • Baek, Jong-Hyeok;Yu, Ho-Sik;Yun, Gyeong-Ho;Kim, Hyeong-Su;Seo, Geum-Seok
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.644-649
    • /
    • 1995
  • The sinterability and the microstructure of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets, which were doped using Al(OH)$_3$, ADS(aluminium distearate), Al(OH)$_3$+ ADS mixture and sintered at 1$700^{\circ}C$ for 4h in H$_2$, atmospheres, were examined. The sintered densities of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets were more than 94% T.D.. The open porosity in ADS doped pellets was dramatically decreased. And the amounts of pores less than l${\mu}{\textrm}{m}$ and larger than 10${\mu}{\textrm}{m}$ were decreased regardless of the kinds of doped Al compounds. And the average pore size of Al doped UO$_2$-6wt%Gd$_2$O$_3$pellets was ranged between 2 and 3${\mu}{\textrm}{m}$. While grain structure of non-doped UO$_2$-6wt%Gd$_2$O$_3$pellets was revealed to be duplex type (rocks in sands), that of Al doped pellets to be uniformly equiaxid type. Especially, the grain size in ADS doped pellets was averaged to 4.6${\mu}{\textrm}{m}$.

  • PDF

Treating Swine Wastewater by Anaerobic Bioreactors (혐기성 생물반응기에 의한 축산폐수의 처리)

  • Lee, Gook-Hee;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Three different types of lab-scale anaerobic bioreactors, AF and two-stage ASBF-PR and ASBF-SP, were evaluated in treating swine wastewater by operating at $1{\sim}2$ days of hydraulic retention time with increasing organic loading rate upto 6.3 $kg-COD/m^3{\cdot}d$ at $35^{\circ}C$. Seeding the anaerobic bioreactors with waste anaerobic digester sludge from a municipal wastewater treatment plant was effective and a 40-day acclimation period was required for steady-state operation. Three anaerobic bioreactors were effective in treating swine wastewater with COD removal efficiency of $66.4{\sim}84.9$% and biogas production rate of $0.333{\sim}0.796m^3/kg-COD_{removed}{\cdot}d$. Increases of organic loading rate by increasing influent COD concentration and/or decreasing hydraulic retention time caused decreases in COD removal efficiency and increases in biogas production rate. At relatively high organic loading rate employed in this study, the treatment efficiency of AF and ASBF-PR were similar but superior than that of ASBF-SP, indicating that porosity and pore size of the media packed in the bioreactors are more important factors contributing the performance of to bioreactors than specific surface area of the media. TKN in swine wastewater must be removed prior to the anaerobic processes when anaerobic process is considered as a major treatment process since influent TKN concentration of $1,540{\sim}1,870mg/L$ to the bioreactors adversely affect the activity of methanogenic bacteria, resulting in decreases of treatment efficiency and biogas production rate by 50%.

  • PDF

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process (바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작)

  • Son, Joon-Gon;Kim, Geun-Hyung;Park, Su-A;Kim, Wan-Doo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Biomedical scaffold for tissue regeneration was fabricated by one of rapid prototyping processes, bioplotting system, with a biodegradable and biocompatible poly($\varepsilon$-carprolactone)(PCL). Through dynamic mechanical test, it was observed that the PCL scaffold manufactured by the bioplotting process has the superior mechanical properties compared to the conventional scaffold fabricated by a salt-leaching process, and the plotted scaffold could be employed as a potential scaffold to regenerating hard and soft tissue. The plotted scaffold was consisted of porous structures. which were interconnected with each pore to help cells be easily adhered and proliferated in the wall of pore tunnels, and metabolic nutrients can be transported within the matrix. By using the plotting system, we could adjust the pore size, porosity, strand pitch, and, strand diameter of PCL scaffolds, which were important parameters to control mechanical properties of the scaffolds, and consequently we could determine that the mechanically controlled scaffolds could be used as a matching scaffold for any required mechanical properties of the target organ. The fabricated 3D PCL scaffold showed enough possibility as a 3D biomedical scaffold, which was cell-cultured with chondrocytes.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic (위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사)

  • Kil, Seong-Hee;Kim, Byung-Duk;Kwon, Jeong-Rock;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • Non destructive testing(NDT) methods of electrofusion(EF) joints of thermoplastics pipes are required for fusion joint safety and for the long term reliability of a pipe system. Electrofusion joints, which are joined at the proper fusion process and procedures, may encounter defects due to the difference of ovality between pipes and coupling, improper fusion process or porosity result from electrofusion joining. These defects can cause the failure of pipeline and by extension, they can be caused the limit to expand the use of plastics pipes. This paper studies inspection results using ultrasonic imaging method for damaged polyethylene electrofusion joints. Gas was leaking from 250mm diameter polyethylene electrofusion joints at February 2004 which was electrofused at December 1994 and operation pressure was 2.45kPa. First, surface inspection was conducted and then in order to find the types of defects examination using ultrasonic imaging method was performed. Lack of fusion and inappropriate inserting for polyethylene pipes into electrofusion coupling were found and causes of the gas leak were judged that misalignment and insert defect. Cutting inspection was performed and each inspection results were compared to. Results of ultrasonic imaging method and cutting inspection were the same.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Preparation of Superflux Nickel Capillary Support with 3D Macropore Channel Network For Gas Separation and Liquid Filtration Membranes (기체/액체 분리막을 위한 3차원 Macropore 채널을 갖는 Superflux 니켈 모세관 지지체의 제조)

  • Song, Ju-Seob;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.214-219
    • /
    • 2018
  • In the present study, superflux nickel capillary supports for gas and vapor separation membranes were prepared by a combined process of NIPS and sintering. Nickel capillary precursors were prepared by NIPS process from PSf-Ni-DMAC-PEG400 dope solution and was sintered at various temperatures in $H_2$ atmosphere to reliably produce Ni capillary support. The optimized Ni capillary support has an outer and inner diameters of 722 and $550{\mu}m$, and its thickness was $94{\mu}m$. It has 3-dimensional pore channel network and its porosity and mean pore diameter was 26% and $4{\mu}m$, respectively. Also, its mechanical strength was tested in tensile mode: its fracture load was 2.84 kgf and the fracture elongation was 13%. Finally, its single gas permeance was measured: He, $N_2$, $O_2$, and $CO_2$ permeance was 432,327, 281,119, 264,259, and 193,143 GPU, respectively. The superflux behavior could be explained from viscous flow through the macropores having a diameter of $4{\mu}m$ and narrow thickness. It could be concluded that the superflux behavior of the Ni capillary support was from the 3-D pore channel network and the small thickness.

A Study on the Migration Characteristics of Cs-137 in a Packed Column (충전층에서의 세슘-137의 이동특성에 관한 연구)

  • Lee, Jae-Owan;Cho, Won-Jin;Han, Kyung-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 1990
  • In this study the migration experiment using packed column with crushed tuff was conducted as a basic research to develop migration model of radionuclides through geologic media. The main emphasis was put on evaluating the validity of migration models. For this, two models were introduced: one is the model which is based on the assumption of instantaneous equilibrium reaction and the other the model based on kinetic process such as intraparticle diffusion. The coefficient of hydrodynamic dispersion in packed column was determined using iodine as nonsorbing tracer. The hydrodynamic dispersion coefficient, D$_{L}$ was shown to be 0.11$\times$10$^{-2}$ $\textrm{cm}^2$/min under the condition of the column porosity of 0.483 and the average water velocity of 0.915$\times$10$^{-2}$ cm/min. The distribution coefficient, Kd of Cs-137 on crushed tuff was 11.3 cc/g at the concentration of 2$\times$10$^{-6}$ M and the temperature of 2$0^{\circ}C$. The breakthrough curve of Cs-137 through packed column was shown to have an asymmetric curve in which long trailing tail appears at the end part of the curve. The results obtained from the comparison of introduced models with experimental data indicated that the mass transfer model with intraparticle diffusion as rate-controlling step simulated the behaviors of Cs-137 migration more adequately, when compared with the bulk reaction model in which the assumption of instantaneous equilibrium reaction was maded. Consequently, the intraparticle diffusion was found to be an important factor in the migration of Cs-137 through packed column.n.

  • PDF

Improvement Method of Sand Ground Using an Environmental Friendly Bio-grouting Material (친환경 바이오그라우팅을 이용한 모래지반 개량 공법)

  • Kim, Dae-Hyeon;Sagong, Myung;Park, Kyung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.473-481
    • /
    • 2013
  • The purpose of this research is to evaluate the improvements in the strength and injection range of loose ground after injecting $CaCO_3$(created by microorganism reaction). For this purpose, three cases of single-layer (Sand, SP, SW) specimens were made in a 150mm D ${\times}$ 200mm H space and two cases of multi-layer specimens (SW/SP, SP/SW) were made in a 150mm D ${\times}$ 300mm H space. The specimens were made with a relative density of 30% of soft ground and an injection was given over a time of one day. The uniaxial compression strength was measured with a cone penetrometer and the injection range was observed by checking the bulb formation around the injection nozzle. Also, the compositions of the specimens were assessed through XRD analyses. Based on the test results, a compressive strength of 500kPa and 15cm thick cementation were noted due to the cementation of the soil. This implies that there are significant effects of the pore condition and size on bio-grouting technology.