• Title/Summary/Keyword: 2D image based modeling

Search Result 134, Processing Time 0.033 seconds

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.

Laterally Constrained Inversion of GREATEM data (지상 송신원 항공 전자탐사 자료의 횡적 제한 역산)

  • Cho, In-Ky;Jang, Je-Hun;Yi, Myeong-Jong;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.33-42
    • /
    • 2017
  • Recently, the grounded electrical-source airborne transient electromagnetic (GREATEM) system with high power source was introduced to achieve deeper investigation depth and to overcome high noise level. Although the GREATEM is a transient electromagnetic system using a long grounded wire as the transmitter, GREATEM data have been interpreted with 1D earth models because 2D or 3D modeling and inversion of vast airborne data are complicated and expensive to calculate. Generally, 1D inversion is subsequently applied to every survey point and combining 1D images together forms the stitched conductivity-depth image. However, the stitched models often result in abrupt variations in neighboring models. To overcome this problem, laterally constrained inversion (LCI) has been developed in inversion of ATEM data, which can yield layered sections with lateral smooth transitions. In this study, we analysed the GREATEM data through 1D numerical modeling for a curved grounded wire source. Furthermore, we developed a laterally constrained inversion scheme for continuous GREATEM data based on a layered earth model. All 1D data sets and models are inverted as one system, producing layered sections with lateral smooth transitions. Applying the developed LCI technique to the GREATEM data, it was confirmed that the laterally constrained inversion can provide laterally smooth model sections that reflect the layering of the survey area effectively.

Study on Management of Water Pipes in Buildings using Augmented Reality (증강현실을 이용한 건물의 수도관 관리 방안 연구)

  • Sang-Hyun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1229-1238
    • /
    • 2023
  • Digital twin is a technology that creates a virtual space that replicates the real world and manages the real world efficiently by integrating the real and virtual spaces. The digital twin concept for water facilities is to effectively manage water pipes in the real world by implementing them in a virtual space and augmenting them to the interior space of the building. In the proposed method, the Unity 3D game engine is used to implement the application of digital twin technology in the interior of a building. The AR Foundation toolkit based on ARCore is used as the augmented reality technology for our Digital Twin implementation. In digital twin applications, it is essential to match the real and virtual worlds. In the proposed method, 2D image markers are used to match the real and virtual worlds. The Unity shader program is also applied to make the augmented objects visually realistic. The implementation results show that the proposed method is simple but accurate in placing water pipes in real space, and visually effective in representing water pipes on the wall.

A Tracking of Head Movement for Stereophonic 3-D Sound (스테레오 입체음향을 위한 머리 움직임 추정)

  • Kim Hyun-Tae;Lee Kwang-Eui;Park Jang-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1421-1431
    • /
    • 2005
  • There are two methods in 3-D sound reproduction: a surround system, like 3.1 channel method and a binaural system using 2-channel method. The binaural system utilizes the sound localization principle of a human using two ears. Generally, a crosstalk between each channel of 2-channel loudspeaker system should be canceled to produce a natural 3-D sound. To solve this problem, it is necessary to trace a head movement. In this paper, we propose a new algorithm to correctly trace the head movement of a listener. The Proposed algorithm is based on the detection of face and eye. The face detection uses the intensity of an image and the position of eyes is detected by a mathematical morphology. When the head of the listener moves, length of borderline between face area and eyes may change. We use this information to the tracking of head movement. A computer simulation results show That head movement is effectively estimated within +10 margin of error using the proposed algorithm.

  • PDF

Droplet Geometry and Its Volume Analysis (기름방울 형상 및 그 체적 분석법)

  • Yoon, Moon-Chul
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.320-325
    • /
    • 2008
  • The recent industrial application requires technical methods to get the cutting fluid droplet surfaces in particular from the viewpoint of topography and micro texture. To characterize the surface topography of droplet, the combination of the confocal laser scanning microscope (CLSM) and wavelet filtering is well suited for obtaining the droplet geometry encountered in tribological research. This technique indicates a better agreement in obtaining an appropriate droplet surface obtained by the CLSM over a detail range of surface accuracy (resolution: $2{\mu}m$). And the results allow an excellent accuracy in a measurement of a droplet surface. The combination of extended focal depth measurement configured and multi-scale wavelet filtering has proven that it can construct a droplet surface in a successive and accurate way. A multi-scale approach of wavelet filtering was developed based on the decomposition and reconstruction of droplet surface by 2D wavelet transform using db9 (a mother wavelet of daubechies). Also this technique can be extended to characterize the quantification of droplet properties and other field in a wide range of scales. Finally this method is verified to be a better droplet surface modeling in a micro scale arising in a mist machining.

Calibration of a Rotating Stereo Line Camera System for Indoor Precise Mapping (실내 정밀 매핑을 위한 회전식 스테레오 라인 카메라 시스템의 캘리브레이션)

  • Oh, Sojung;Shin, Jinsoo;Kang, Jeongin;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.171-182
    • /
    • 2015
  • We propose a camera system to acquire indoor stereo omni-directional images and its calibration method. These images can be utilized for indoor precise mapping and sophisticated imagebased services. The proposed system is configured with a rotating stereo line camera system, providing stereo omni-directional images appropriate to stable stereoscopy and precise derivation of object point coordinates. Based on the projection model, we derive a mathematical model for the system calibration. After performing the system calibration, we can estimate object points with an accuracy of less than ${\pm}16cm$ in indoor space. The proposed system and calibration method will be applied to indoor precise 3D modeling.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

Relationships among Brand Equity Components: An Exploratory Study of the Moderating Role of Product Type (품패자산조성부분간적상호관계(品牌资产组成部分间的相互关系): 관우산품충류조절작용적탐색연구(关于产品种类调节作用的探索研究))

  • Moon, Byeong-Joon;Park, Won-Kyu;Choi, Sang-Chul
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.98-109
    • /
    • 2010
  • Research on the construction, measurement, and management of brand equity has been extensive since David A. Aaker(1991) and Kevin Lane Keller(1993) first advanced the concept. Recently, much attention has been devoted to the components of brand equity: brand awareness, perceived quality, brand image, and brand loyalty. This study explores the relationships among these components, focusing particularly on the moderating role of product type (utilitarian vs. hedonic) in their causal relationships. A model to study the relationship among components of brand equity, particularly the moderating role of product type, is featured in Figure 1. The hypotheses of the study are proposed as follows: that consumers' brand awareness has a positive influence on brand loyalty and brand image; that consumers' perceived quality has a positive influence on brand loyalty and brand image; that consumers' brand image influences brand loyalty positively; and that relationships among components of brand equity will be moderated by product type. That is, in the case of utilitarian products, the impact of perceived quality on brand loyalty will be relatively stronger, whereas with hedonic products the impact of brand image on brand loyalty will be relatively stronger. To determine the products for the study, a pre-test of 58 college students in the Seoul metropolitan area was conducted based on the product type scale. As a result, computers were selected as the utilitarian product and blue jeans became the hedonic product. For each product type, two brands were selected: Samsung and HP for computers, and Levis and Nix for blue jeans. In the main study, 237 college students in the metropolitan area were surveyed to measure their brand awareness, perceived quality, brand image, and brand loyalty toward the selected two brands of each product type. The subjects were divided into two groups: one group (121 subjects) for computers, the other (116 subjects) for blue jeans. The survey questionnaires for the study included four parts: five questions on brand awareness and four questions each on perceived quality, brand image, and brand loyalty. All questions were to be answered using 7-point Likert scales. The data collected by the survey were processed to assess reliability and validity, and the causal relationships were analyzed to verify the hypotheses using the AMOS 7 program, a tool for analyzing structural equation modeling. A confirmatory factor analysis assessed the appropriateness of the measurement model, and the fit indices denoted that the model was satisfactory. The relationships among the components of brand equity were also analyzed using AMOS 7. The fit indices of the structural model denoted that it was also satisfactory. The paths in the structural model as will be seen in Figure 2 show that perceived quality affects brand image positively, but that brand awareness does not affect brand image. Moreover, it shows that brand awareness, perceived quality, and brand image are positively related with brand loyalty, and that this relationship is moderated by product type. In the case of utilitarian products, perceived quality has relatively more influence on brand loyalty. Conversely, in the case of hedonic products, brand image has relatively more influence on brand loyalty. The results of this empirical study contribute toward the advancement of our understanding of the relationships among the components of brand equity and expand the theoretical underpinnings for brand equity measurement. It also helps further our understanding of the effect of product type on customer-based brand equity. In a marketing management practice perspective, these results may provide managerial implications for building and maintaining brand equity effectively.

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF