• Title/Summary/Keyword: 2D finite elements

Search Result 262, Processing Time 0.042 seconds

MLS-Based Finite Elements and a Proposal for Their Applications (MLS기반 유한요소와 그 응용에 관한 제언)

  • Cho, Young-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • In this paper, review of developed MLS-based finite elements and a proposal for their applications are described. The shape functions and their derivatives of MLS-based finite elements are constructed using Moving-Least Square approximation. In MLS-based finite element, using the adequate influence domain of weight function used in MLS approximation, kronecker delta condition could be satisfied at the element boundary. Moreover, because of the characteristics of MLS approximation, we could easily add extra nodes at an arbitrary position in MLS-based finite elements. For these reasons, until now, several variable-node elements(2D variable element for linear case and quadratic case and 3D variable-node elements) and finite crack elements are developed using MLS-based finite elements concept. MLS-based finite elements could be extended to 2D variable-node triangle element, 2D finite crack triangle element, variable-node shell element, finite crack shell element, and 3D polyhedron element. In this paper, we showed the feasibility of 3D polyhedron element at the case of femur meshing.

Elastodynamic infinite elements based on modified Bessel shape functions, applicable in the finite element method

  • Kazakov, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.353-362
    • /
    • 2012
  • In this paper decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions and appropriate for Soil-Structure Interaction problems are described and discussed. These elements can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be formulated. It is demonstrated that the application of the elastodynamical infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite Element Method is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

Three dimensional dynamic analysis of underground tunnels by coupling of boundary and finite elements (유한요소-경계요소 조합에 의한 터널의 3차원 동적해석)

  • 이찬우;김문겸;황학주
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.91-102
    • /
    • 1995
  • For the wave propagation problems, the influence of time-dependent dynamic behavior must be accounted in the analysis. In this study, the dynamic analysis method which combines finite elements and boundary elements is developed for the wave propagation problem modelling the infinity of medium through 3-D boundary elements and underground structure through degenerated finite shell elements. Performing dynamic analysis of underground tunnels by the proposed coupling method of boundary and finite elements, it is found that the change of the stiffness of structures has a good effect on the response. It is also found that the consideration of the repeating effect due to moving traffic loads which is difficult with existing 2-D dynamic analysis can be possible with the 3-D analysis in time domain.

  • PDF

Static stress analysis of multi-layered soils with twin tunnels by using finite and infinite elements

  • Yusuf Z. Yuksel;Seref D. Akbas
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • The aim of this paper is to investigate stress analysis of semi-infinite soils consisting of two layers with twin rectangular tunnels under static loads. The region close to the ground surface and tunnel modelled within finite elements. In order to use a more realistic model, the far region is modelled within infinite elements. The material model of the layered soil is considered as elastic and isotropic. In the finite element solution of the problem, two dimensional (2D) plane solid elements are used with sixteen-nodes rectangular finite and eight-nodes infinite shapes. Finite and infinite elements are ordered to be suitable for the tunnel and the soils. The governing equations of the problem are obtained by using the virtual work principle. In the numerical process, the five-point Gauss rule is used for the calculation of the integrations. In order to validate using methods, comparison studies are performed. In the numerical results, the stress distributions of the two layered soils containing twin rectangular tunnels presented. In the presented results, effects of the location of the tunnels on the stress distributions along soil depth are obtained and discussed in detail. The obtained results show that the locations of the tunnels are very effective on the stress distribution on the soils.

Formulation Method of a Solid-To-Beam Transitional Finite Element (연속체-보 천이 유한요소의 구성)

  • Park, Woo-Jin;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.351-356
    • /
    • 2000
  • Various transition elements are generally used for the effective analysis of a complicated mechanical structure. In this paper, a solid-to-beam transition finite element which connects a continuum element and a $c^1-continuity$ beam element each other is proposed. The shape functions of the transition finite elements, which a 8-noded hexahedral solid element fur 3D analysis and a 4-noded quadrilateral plane element fur 2D analysis are connected to a Euler's beam element, are explicitely formulated. In order to show the effectiveness and convergence characteristics of the proposed transition elements. numerical tests are performed for various examples and their results are compared with those obtained by other methods. As the result of this study. following conclusions are obtained: (1)The proposed transition finite elements show the monotonic convergence characteristics because of having used the compatible displacement folds. (2)As being used the transition element in the finite element analysis, the finite element modelings are more convenient and the analysis results are more accurate because of the formulation characteristies of the Euler's beam element.

  • PDF

The enriched 2D solid finite elements in geometric nonlinear analysis

  • Hyung-Gyu Choi;Chaemin Lee;San Kim
    • Structural Engineering and Mechanics
    • /
    • v.92 no.4
    • /
    • pp.349-363
    • /
    • 2024
  • The primary strength of the enriched finite element method (enriched FEM) is its ability to enhance solution accuracy without mesh refinement. It also allows for the selective determination of cover function degrees based on desired accuracy. Furthermore, there is an adaptive enrichment strategy that applies enriched elements to targeted areas where accuracy may be lacking rather than across the entire domain, demonstrating its powerful use in engineering applications. However, its application to solid and structural problems encounters a linear dependence (LD) issue induced by using polynomial functions as cover functions. Recently, enriched finite elements that address the LD problem in linear analysis have been developed. In light of these advancements, this study is devoted to a robust extension of the enriched FEM to nonlinear analysis. We propose a nonlinear formulation of the enriched FEM, employing 3-node and 4-node 2D solid elements for demonstration. The formulation employs a total Lagrangian approach, allowing for large displacements and rotations. Numerical examples demonstrate that the enriched elements effectively improve solution accuracy and ensure stable convergence in nonlinear analysis. We also present results from adaptive enrichment to highlight its effectiveness.

Natural frequency error estimation for 3D brick elements

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.137-148
    • /
    • 1997
  • In computing eigenvalues for a large finite element system it has been observed that the eigenvalue extractors produce eigenvectors that are in some sense more accurate than their corresponding eigenvalues. From this observation the paper uses a patch type technique based on the eigenvector for one mesh quality to provide an eigenvalue error indicator. Tests show this indicator to be both accurate and reliable. This technique was first observed by Stephen and Steven for an error estimation for buckling and natural frequency of beams and two dimensional in-plane and out-of-plane structures. This paper produces and error indicator for the more difficult problem of three dimensional brick elements.

Automatic Generation of 3-D Finite Element Meshes: Part(II) -Mesh Generation from Tetrahedron-based Octree- (삼차원 유한요소의 자동생성 (2) -사면체 옥트리로부터의 유한요소 생성-)

  • 정융호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.647-660
    • /
    • 1995
  • Given the tetrahedron-based octree approximation of a solid as described in part(I) of this thesis, in this part(II) a systematic procedure of 'boundary moving' is developed for the fully automatic generation of 3D finite element meshes. The algorithm moves some vertices of the octants near the boundary onto the exact surface of a solid without transforming the topology of octree leaf elements. As a result, the inner octree leaf elements can be used as exact tetrahedral finite element meshes. In addition, as a quality measure of a tetrahedral element, 'shape value' is propopsed and used for the generation of better finite elements during the boundary moving process.