• Title/Summary/Keyword: 2D dynamic behavior

Search Result 198, Processing Time 0.032 seconds

A Comparative Study on the Behavior of High-rise Buildings by 2D and 3D Dynamic Analysis with Considering the Ground (초고층 건물의 지반을 고려한 2D 및 3D 동적해석에 의한 거동 비교 연구)

  • You, Kwangho;Baek, Yong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.5-14
    • /
    • 2019
  • Recently, earthquakes have occurred in our country and seismic stability of high-rise buildings in large cities is being a growing interest and thus the related studies have been increased. Also the grounds are considered indirectly in most of seismic designs and analyses and seismic researches based on 3D dynamic analysis are insufficient. In this study, therefore, 2D and 3D dynamic analyses were performed based on the SSI complete model including grounds and the behavior was compared and analyzed. For dynamic modeling, linear time history analyses were performed by using MIDAS GTS NX. For this purpose, a high-rise building was assumed to be constructed on top of the bedrock and surrounded by a surface layer. A sensitivity analysis was performed with the selected parameters. The dynamic behavior was compared and analyzed in terms of horizontal displacements, drift ratios, bending stresses, and weak parts. In most cases, 2D dynamic behavior was calculated to be larger than 3D's and thus it shows more conservative results with increasing number and size of weak parts.

Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody (차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구)

  • Kim, Geo-Young;Koo, Jung-Seo;Park, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

A Numerical Analysis of Dynamic Behavior of Rock Mass with Intense Discontinuities (절리의 방향성을 고려한 암반의 동적거동 수치해석)

  • Ha, Tae-Wook;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.394-404
    • /
    • 2006
  • Dynamic behavior of rock structures depends largely on the dynamic characteristics of ground and input earthquake wave. For blocky rocks with intense discontinuities, the mechanical characteristics of blocks and structural and mechanical characteristics of discontinuities affect overall behavior. In this study, UDEC was adopted to evaluate the dynamic behavior of rocks with various structural characteristics. Obtained results were compared to those of $FLAC^{2D}$, a continuum analysis, and the validity of the method was examined for dynamic analysis of discontinuous rocks for earthquake. Analysis considering the discontinuity showed significant changes in structural shape by the influence of joint behavior, and the behavior by continuum analysis was overestimated.

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

Seismic Assessment and Performance of Nonstructural Components Affected by Structural Modeling

  • Hur, Jieun;Althoff, Eric;Sezen, Halil;Denning, Richard;Aldemir, Tunc
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.387-394
    • /
    • 2017
  • Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

A Dynamic Utilization method of FSM for Adaptive NPC Generation (적응형 NPC 생성을 위한 FSM의 동적 활용 방안)

  • Yang, Jeong-Mo;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1258-1266
    • /
    • 2008
  • Most game players obtain more satisfactions by interacting with human players that have fluxed behavior patterns, than with NPC(Non-Player Character)s that have fixed behavior patterns. Since it is impossible that game players always interact with human players, adaptive NPCs that can variously behave are required. In this paper, we present a method to create adaptive NPCs using a dynamic FSM(Finite State Machine). This method configures a dynamic FSM by using behavior information at behavior database, and repeatedly updates the dynamic FSM so that the dynamic FSM's total efficiency approaches to a given target efficiency. NPC adapts to game players through this process. For an experiment, we have implemented a 2D game with this strategy, and experimented with various target efficiencies. We show that a dynamic FSM's total efficiency approaches to target efficiency by updating a dynamic FSM several times over. It means that the adaptive NPC to be generated, adapts to game players.

  • PDF

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

Dynamic Analysis of Space Frameworks on the Elastic soil (탄성 지반상에 놓인 3차원 골조구조물의 동적해석)

  • 장병순;서상근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.37-44
    • /
    • 1996
  • When a load such as the mechanical load, the wind load, and the seismic load causing a vibration, acts on the body of the 3-D frameworks with slab, it is required to consider the dynamic behavior of elastic soil as well as that of 3-D structure in the structural analysis. Thus, this study presents the analysis of dynamic behavior using finite element method that is formulated by using a model of the 3-D structure. For the idealization of the actual structure closely into a geometric shape, plate is subdivided into 4-node plate element with the flexibility, beam-column is subdivided into 2-node beam element, and elastic soil is subdivided into 8-node brick element.

  • PDF

A Study on the Prediction of Grain Size Distribution in Hot Forging of Waspaloy Turbine Disc (Waspaloy 터빈디스크의 열간 단조시 결정립분포 해석에 관한 연구)

  • Yeom, Jong-Taek;Lee, Chong-Soo;Kim, Jeoung-Han;Lee, Dong-Geun;Park, Nho-Kwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.70-76
    • /
    • 2006
  • The microstructure evolution during a hot forging of Waspaloy was investigated using the recrystallization model and FEM simulation. In order to obtain an uniform microstructure, hot forging was carried out by two step. The change of grain size during hot forging has a deep connection with dynamic recrystallization behavior. Avrami-type constitutive equation for the dynamic recrystallization was implemented into an user subroutine of 2D FE simulator. The evolution of grain structure in the two-step forging of Waspaloy was simulated using the 2D FEM user-subroutine. The detailed variation of microstructures due to dynamic recrystallization could effectively be predicted at various locations in a forged pancake.