• Title/Summary/Keyword: 2D depth map

Search Result 171, Processing Time 0.024 seconds

Implementation of a 3D Recognition applying Depth map and HMM (깊이 맵과 HMM을 이용한 인식 시스템 구현)

  • Han, Chang-Ho;Oh, Choon-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Recently, we used to recognize for human motions with some recognition algorithms. examples, HMM, DTW, PCA etc. In many human motions, we concentrated our research on recognizing fighting motions. In previous work, to obtain the fighting motion data, we used motion capture system which is developed with some active markers and infrared rays cameras and 3 dimension information converting algorithms by the stereo matching method. In this paper, we describe that the different method to acquiring 3 dimension fighting motion data and a HMM algorithm to recognize the data. One of the obtaining 3d data we used is depth map algorithm which is calculated by a stereo method. We test the 3d acquiring and the motion recognition system, and show the results of accuracy and performance results.

3DTIP: 3D Stereoscopic Tour-Into-Picture of Korean Traditional Paintings (3DTIP: 한국 고전화의 3차원 입체 Tour-Into-Picture)

  • Jo, Cheol-Yong;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.616-624
    • /
    • 2009
  • This paper presents a 3D stereoscopic TIP (Tour Into Picture) for Korean classical paintings being composed of persons, boat, and landscape. Unlike conventional TIP methods providing 2D image or video, our proposed TIP can provide users with 3D stereoscopic contents. Navigating a picture with stereoscopic viewing can deliver more realistic and immersive perception. The method firstly makes input data being composed of foreground mask, background image, and depth map. The second step is to navigate the picture and to obtain rendered images by orthographic or perspective projection. Then, two depth enhancement schemes such as depth template and Laws depth are utilized in order to reduce a cardboard effect and thus to enhance 3D perceived depth of the foreground objects. In experiments, the proposed method was tested on 'Danopungjun' and 'Muyigido' that are famous paintings made in Chosun Dynasty. The stereoscopic animation was proved to deliver new 3D perception compared with 2D video.

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

Pattern-based Depth Map Generation for Low-complexity 2D-to-3D Video Conversion (저복잡도 2D-to-3D 비디오 변환을 위한 패턴기반의 깊이 생성 알고리즘)

  • Han, Chan-Hee;Kang, Hyun-Soo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • 2D-to-3D video conversion vests 3D effects in a 2D video by generating stereoscopic views using depth cues inherent in the 2D video. This technology would be a good solution to resolve the problem of 3D content shortage during the transition period to the full ripe 3D video era. In this paper, a low-complexity depth generation method for 2D-to-3D video conversion is presented. For temporal consistency in global depth, a pattern-based depth generation method is newly introduced. A low-complexity refinement algorithm for local depth is also provided to improve 3D perception in object regions. Experimental results show that the proposed method outperforms conventional methods in terms of complexity and subjective quality.

Applying differential techniques for 2D/3D video conversion to the objects grouped by depth information (2D/3D 동영상 변환을 위한 그룹화된 객체별 깊이 정보의 차등 적용 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1302-1309
    • /
    • 2012
  • In this paper, we propose applying differential techniques for 2D/3D video conversion to the objects grouped by depth information. One of the problems converting 2D images to 3D images using the technique tracking the motion of pixels is that objects not moving between adjacent frames do not give any depth information. This problem can be solved by applying relative height cue only to the objects which have no moving information between frames, after the process of splitting the background and objects and extracting depth information using motion vectors between objects. Using this technique all the background and object can have their own depth information. This proposed method is used to generate depth map to generate 3D images using DIBR(Depth Image Based Rendering) and verified that the objects which have no movement between frames also had depth information.

3D Multiple Objects Detection and Tracking on Accurate Depth Information for Pose Recognition (자세인식을 위한 정확한 깊이정보에서의 3차원 다중 객체검출 및 추적)

  • Lee, Jae-Won;Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.963-976
    • /
    • 2012
  • 'Gesture' except for voice is the most intuitive means of communication. Thus, many researches on how to control computer using gesture are in progress. User detection and tracking in these studies is one of the most important processes. Conventional 2D object detection and tracking methods are sensitive to changes in the environment or lights, and a mix of 2D and 3D information methods has the disadvantage of a lot of computational complexity. In addition, using conventional 3D information methods can not segment similar depth object. In this paper, we propose object detection and tracking method using Depth Projection Map that is the cumulative value of the depth and motion information. Simulation results show that our method is robust to changes in lighting or environment, and has faster operation speed, and can work well for detection and tracking of similar depth objects.

3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair (전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출)

  • Seo, Joonho;Kim, Chang Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

High-Quality Depth Map Generation of Humans in Monocular Videos (단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법)

  • Lee, Jungjin;Lee, Sangwoo;Park, Jongjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • The quality of 2D-to-3D conversion depends on the accuracy of the assigned depth to scene objects. Manual depth painting for given objects is labor intensive as each frame is painted. Specifically, a human is one of the most challenging objects for a high-quality conversion, as a human body is an articulated figure and has many degrees of freedom (DOF). In addition, various styles of clothes, accessories, and hair create a very complex silhouette around the 2D human object. We propose an efficient method to estimate visually pleasing depths of a human at every frame in a monocular video. First, a 3D template model is matched to a person in a monocular video with a small number of specified user correspondences. Our pose estimation with sequential joint angular constraints reproduces a various range of human motions (i.e., spine bending) by allowing the utilization of a fully skinned 3D model with a large number of joints and DOFs. The initial depth of the 2D object in the video is assigned from the matched results, and then propagated toward areas where the depth is missing to produce a complete depth map. For the effective handling of the complex silhouettes and appearances, we introduce a partial depth propagation method based on color segmentation to ensure the detail of the results. We compared the result and depth maps painted by experienced artists. The comparison shows that our method produces viable depth maps of humans in monocular videos efficiently.